Mercurial > hg > Members > kono > Proof > category
comparison equalizer.agda @ 251:40947f08bab6
comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 09 Sep 2013 16:03:14 +0900 |
parents | a1e2228c2a6b |
children | e0835b8dd51b |
comparison
equal
deleted
inserted
replaced
250:a1e2228c2a6b | 251:40947f08bab6 |
---|---|
29 A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] | 29 A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] |
30 equalizer : Hom A c a | 30 equalizer : Hom A c a |
31 equalizer = e | 31 equalizer = e |
32 | 32 |
33 -- | 33 -- |
34 -- Flat Equational Definition of Equalizer | 34 -- Burroni's Flat Equational Definition of Equalizer |
35 -- | 35 -- |
36 record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) (e : Hom A c a) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where | 36 record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) (e : Hom A c a) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where |
37 field | 37 field |
38 α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (e : Hom A c a ) → Hom A c a | 38 α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (e : Hom A c a ) → Hom A c a |
39 γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c | 39 γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d c |
77 (g o e ) o h | 77 (g o e ) o h |
78 ≈↑⟨ assoc ⟩ | 78 ≈↑⟨ assoc ⟩ |
79 g o ( e o h ) | 79 g o ( e o h ) |
80 ∎ | 80 ∎ |
81 | 81 |
82 -------------------------------- | |
82 -- | 83 -- |
83 -- | 84 -- |
84 -- An isomorphic arrow c' to c makes another equalizer | 85 -- An isomorphic arrow c' to c makes another equalizer |
85 -- | 86 -- |
86 -- e eqa f g f | 87 -- e eqa f g f |
141 id1 A c' o j | 142 id1 A c' o j |
142 ≈⟨ idL ⟩ | 143 ≈⟨ idL ⟩ |
143 j | 144 j |
144 ∎ | 145 ∎ |
145 | 146 |
147 -------------------------------- | |
146 -- | 148 -- |
147 -- If we have two equalizers on c and c', there are isomorphic pair h, h' | 149 -- If we have two equalizers on c and c', there are isomorphic pair h, h' |
148 -- | 150 -- |
149 -- h : c → c' h' : c' → c | 151 -- h : c → c' h' : c' → c |
150 -- e' = h o e | 152 -- e' = h o e |
171 -- | 173 -- |
172 -- h j e f = h j e g → h = 'j e f | 174 -- h j e f = h j e g → h = 'j e f |
173 -- h = j e f -> j = j' | 175 -- h = j e f -> j = j' |
174 -- | 176 -- |
175 | 177 |
176 c-iso→' : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) | 178 e←e' : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) |
177 → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) | 179 → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) |
178 → A [ A [ e' o c-iso-l eqa eqa' keqa ] ≈ e ] | 180 → A [ A [ e' o c-iso-l eqa eqa' keqa ] ≈ e ] |
179 c-iso→' {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin | 181 e←e' {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin |
180 e' o c-iso-l eqa eqa' keqa | 182 e' o c-iso-l eqa eqa' keqa |
181 ≈⟨⟩ | 183 ≈⟨⟩ |
182 e' o k eqa' e (fe=ge eqa) | 184 e' o k eqa' e (fe=ge eqa) |
183 ≈⟨⟩ | 185 ≈⟨⟩ |
184 equalizer eqa' o k eqa' e (fe=ge eqa) | 186 equalizer eqa' o k eqa' e (fe=ge eqa) |
185 ≈⟨ ek=h eqa' ⟩ | 187 ≈⟨ ek=h eqa' ⟩ |
186 e | 188 e |
187 ∎ | 189 ∎ |
188 | 190 |
189 c-iso←' : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) | 191 e'←e : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) |
190 → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) | 192 → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) |
191 → A [ A [ e o c-iso-r eqa eqa' keqa ] ≈ e' ] | 193 → A [ A [ e o c-iso-r eqa eqa' keqa ] ≈ e' ] |
192 c-iso←' {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin | 194 e'←e {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin |
193 e o c-iso-r eqa eqa' keqa | 195 e o c-iso-r eqa eqa' keqa |
194 ≈⟨⟩ | 196 ≈⟨⟩ |
195 e o k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) | 197 e o k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) |
196 ≈↑⟨ car (ek=h eqa' ) ⟩ | 198 ≈↑⟨ car (ek=h eqa' ) ⟩ |
197 ( equalizer eqa' o k eqa' e (fe=ge eqa) ) o k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) | 199 ( equalizer eqa' o k eqa' e (fe=ge eqa) ) o k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) |
230 equalizer keqa' o k eqa' e (fe=ge eqa ) | 232 equalizer keqa' o k eqa' e (fe=ge eqa ) |
231 ≈⟨ cdr ( begin | 233 ≈⟨ cdr ( begin |
232 k eqa' e (fe=ge eqa ) | 234 k eqa' e (fe=ge eqa ) |
233 ≈⟨ uniqueness eqa' ( begin | 235 ≈⟨ uniqueness eqa' ( begin |
234 e' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) | 236 e' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) |
235 ≈↑⟨ car (c-iso←' eqa eqa' keqa ) ⟩ | 237 ≈↑⟨ car (e'←e eqa eqa' keqa ) ⟩ |
236 ( e o equalizer keqa' ) o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) | 238 ( e o equalizer keqa' ) o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)) |
237 ≈↑⟨ assoc ⟩ | 239 ≈↑⟨ assoc ⟩ |
238 e o ( equalizer keqa' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c))) | 240 e o ( equalizer keqa' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c))) |
239 ≈⟨ cdr ( ek=h keqa' ) ⟩ | 241 ≈⟨ cdr ( ek=h keqa' ) ⟩ |
240 e o id1 A c | 242 e o id1 A c |
247 id1 A c | 249 id1 A c |
248 ∎ | 250 ∎ |
249 | 251 |
250 | 252 |
251 | 253 |
254 -------------------------------- | |
252 ---- | 255 ---- |
253 -- | 256 -- |
254 -- An equalizer satisfies Burroni equations | 257 -- An equalizer satisfies Burroni equations |
255 -- | 258 -- |
256 ---- | 259 ---- |
371 j o id1 A d | 374 j o id1 A d |
372 ≈⟨ idR ⟩ | 375 ≈⟨ idR ⟩ |
373 j | 376 j |
374 ∎ | 377 ∎ |
375 | 378 |
379 -------------------------------- | |
380 -- | |
381 -- Bourroni equations gives an Equalizer | |
382 -- | |
376 | 383 |
377 lemma-equ2 : {a b c : Obj A} (f g : Hom A a b) (e : Hom A c a ) | 384 lemma-equ2 : {a b c : Obj A} (f g : Hom A a b) (e : Hom A c a ) |
378 → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g e) f g | 385 → ( bur : Burroni A {c} {a} {b} f g e ) → Equalizer A {c} {a} {b} (α bur f g e) f g |
379 lemma-equ2 {a} {b} {c} f g e bur = record { | 386 lemma-equ2 {a} {b} {c} f g e bur = record { |
380 fe=ge = fe=ge1 ; | 387 fe=ge = fe=ge1 ; |