comparison src/CCC.agda @ 1034:40c39d3e6a75

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 31 Mar 2021 15:58:02 +0900
parents 4b517d46e987
children 849f85e543f1
comparison
equal deleted inserted replaced
1033:a59c51b541a2 1034:40c39d3e6a75
191 -- | m | | ⊤ 191 -- | m | | ⊤
192 -- | ↓ char m ↓ Ker h = Equalizer (char m mono) (⊤ ∙ ○ a ) 192 -- | ↓ char m ↓ Ker h = Equalizer (char m mono) (⊤ ∙ ○ a )
193 -- + ------→ a -----------→ Ω m = Equalizer (char m mono) (⊤ ∙ ○ a ) 193 -- + ------→ a -----------→ Ω m = Equalizer (char m mono) (⊤ ∙ ○ a )
194 -- ker h h 194 -- ker h h
195 -- 195 --
196 -- if m is an equalizer, there is an iso between e and b as k, and if we have the iso, m becomes an equalizer.
197 -- equalizer.equalizerIso : {a b c : Obj A} → (f g : Hom A a b ) → (equ : Equalizer A f g )
198 -- → (m : Hom A c a) → ( ker-iso : IsoL A m (equalizer equ) ) → IsEqualizer A m f g
199
196 open Equalizer 200 open Equalizer
197 open import equalizer 201 open import equalizer
198 202
199 record Mono {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {b a : Obj A} (mono : Hom A b a) : Set (c₁ ⊔ c₂ ⊔ ℓ) where 203 record Mono {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {b a : Obj A} (mono : Hom A b a) : Set (c₁ ⊔ c₂ ⊔ ℓ) where
200 field 204 field