Mercurial > hg > Members > kono > Proof > category
comparison freyd2.agda @ 639:4cf8f982dc5b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jul 2017 02:18:57 +0900 |
parents | a07b95e92933 |
children | 0d6cab67eadc |
comparison
equal
deleted
inserted
replaced
638:a07b95e92933 | 639:4cf8f982dc5b |
---|---|
291 limitInSets Γ lim = record { | 291 limitInSets Γ lim = record { |
292 limit = λ a t → ψ a t | 292 limit = λ a t → ψ a t |
293 ; t0f=t = λ {a t i} → t0f=t0 {a} {t} {i} | 293 ; t0f=t = λ {a t i} → t0f=t0 {a} {t} {i} |
294 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t | 294 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t |
295 } where | 295 } where |
296 tacomm0 : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} | |
297 → Sets [ Sets [ FMap (U ○ Γ) f o TMap t y ] ≈ Sets [ TMap t z o FMap ( K Sets I a ) f ] ] | |
298 tacomm0 a t x {y} {z} {f} = IsNTrans.commute ( isNTrans t ) {y} {z} {f} | |
299 sfcomm : Sets [ Sets [ FMap U ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) o hom (preinitialObj PI) ] | |
300 ≈ Sets [ hom (FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x)) o FMap ( K Sets A * ) ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) ] | |
301 sfcomm = ? | |
296 tacomm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} | 302 tacomm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} |
297 → A [ A [ FMap Γ f o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) ] ≈ | 303 → A [ A [ FMap Γ f o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) ] ≈ |
298 A [ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) | 304 A [ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) |
299 o FMap (K A I (obj (preinitialObj PI))) f ] ] | 305 o FMap (K A I (obj (preinitialObj PI))) f ] ] |
300 tacomm a t x {y} {z} {f} = let open ≈-Reasoning A in begin | 306 tacomm a t x {y} {z} {f} = let open ≈-Reasoning A in begin |
303 arrow (fArrow A U (FMap Γ f) (TMap t y x )) | 309 arrow (fArrow A U (FMap Γ f) (TMap t y x )) |
304 o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) | 310 o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) |
305 ≈⟨ {!!} ⟩ | 311 ≈⟨ {!!} ⟩ |
306 arrow (SFSFMap← SFS (FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) )) | 312 arrow (SFSFMap← SFS (FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) )) |
307 o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) | 313 o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) |
314 ≈⟨⟩ | |
315 arrow (( K (Sets) A * ↓ U) [ SFSFMap← SFS (FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) ) | |
316 o SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))}) ] ) | |
308 ≈⟨ {!!} ⟩ | 317 ≈⟨ {!!} ⟩ |
309 arrow (SFSFMap← SFS (( K (Sets) A * ↓ U) [ FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) | 318 arrow ( SFSFMap← SFS (( K (Sets) A * ↓ U) [ FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) |
310 o preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))} ] )) | 319 o preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))} ] ) ) |
311 ≈⟨ {!!} ⟩ | 320 ≈⟨ {!!} ⟩ |
312 arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) | 321 arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) |
313 ≈↑⟨ idR ⟩ | 322 ≈↑⟨ idR ⟩ |
314 arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) | 323 arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) |
315 o FMap (K A I (obj (preinitialObj PI))) f | 324 o FMap (K A I (obj (preinitialObj PI))) f |
316 ∎ | 325 ∎ |
317 ta : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) → NTrans I A (K A I (obj (preinitialObj PI))) Γ | 326 ta : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) → NTrans I A (K A I (obj (preinitialObj PI))) Γ |
318 ta a t x = record { TMap = λ (a : Obj I ) → | 327 ta a t x = record { TMap = λ (a : Obj I ) → |
319 arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ a) (TMap t a x))} ) ) | 328 arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ a) (TMap t a x))} ) ) |
320 ; isNTrans = record { commute = {!!} }} -- λ {a} {b} {f} → commute2 {a} {b} {f} } | 329 ; isNTrans = record { commute = λ {y} {z} {f} → tacomm a t x {y} {z} {f} }} |
321 ψ : (a : Obj Sets) → NTrans I Sets (K Sets I a) (U ○ Γ) → Hom Sets a (FObj U (a0 lim)) | 330 ψ : (a : Obj Sets) → NTrans I Sets (K Sets I a) (U ○ Γ) → Hom Sets a (FObj U (a0 lim)) |
322 ψ a t x = FMap U (limit (isLimit lim) (obj (preinitialObj PI)) (ta a t x)) ( hom (preinitialObj PI) OneObj ) | 331 ψ a t x = FMap U (limit (isLimit lim) (obj (preinitialObj PI)) (ta a t x)) ( hom (preinitialObj PI) OneObj ) |
323 t0f=t0 : {a : Obj Sets} {t : NTrans I Sets (K Sets I a) (U ○ Γ)} {i : Obj I} → | 332 t0f=t0 : {a : Obj Sets} {t : NTrans I Sets (K Sets I a) (U ○ Γ)} {i : Obj I} → |
324 Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 lim) (t0 lim) U) i o ψ a t ] ≈ TMap t i ] | 333 Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 lim) (t0 lim) U) i o ψ a t ] ≈ TMap t i ] |
325 t0f=t0 {a} {t} = {!!} | 334 t0f=t0 {a} {t} = {!!} |