Mercurial > hg > Members > kono > Proof > category
comparison freyd2.agda @ 642:53f2a11474ee
on going ..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Jul 2017 08:41:01 +0900 |
parents | c65d08d85092 |
children | 5eb746702732 |
comparison
equal
deleted
inserted
replaced
641:c65d08d85092 | 642:53f2a11474ee |
---|---|
297 limitInSets Γ lim = record { | 297 limitInSets Γ lim = record { |
298 limit = λ a t → ψ a t | 298 limit = λ a t → ψ a t |
299 ; t0f=t = λ {a t i} → t0f=t0 {a} {t} {i} | 299 ; t0f=t = λ {a t i} → t0f=t0 {a} {t} {i} |
300 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t | 300 ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t |
301 } where | 301 } where |
302 revUub : (pi : FObj U (obj (preinitialObj PI)) ) → pi ≡ (hom (preinitialObj PI) OneObj) | |
303 revUub _ = {!!} | |
304 revU' : (a : Obj (K Sets A * ↓ U)) | |
305 → Sets [ Sets [ FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ) o hom (preinitialObj PI) ] ≈ hom a ] | |
306 revU' a = let open ≈-Reasoning Sets in begin | |
307 FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) o hom (preinitialObj PI) | |
308 ≈⟨ comm (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ⟩ | |
309 hom a | |
310 ∎ | |
302 revU : (a : Obj (K Sets A * ↓ U)) | 311 revU : (a : Obj (K Sets A * ↓ U)) |
303 → Sets [ FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ) ≈ ( λ upi → hom a OneObj ) ] | 312 → Sets [ FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a })) ) ≈ ( λ upi → hom a OneObj ) ] |
304 revU a = extensionality Sets ( λ (pi : FObj U (obj (preinitialObj PI)) ) → ( begin | 313 revU a = extensionality Sets ( λ (upi : FObj U (obj (preinitialObj PI)) ) → ( begin |
305 FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) pi | 314 FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) upi |
306 ≡⟨ {!!} ⟩ | 315 ≡⟨ {!!} ⟩ |
307 FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) (hom (preinitialObj PI) OneObj) | 316 FMap U ( arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) (hom (preinitialObj PI) OneObj) |
308 ≡⟨ ≡-cong ( λ k → k OneObj ) ( comm (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) ⟩ | 317 ≡⟨ ≡-cong ( λ k → k OneObj ) ( comm (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) a }))) ⟩ |
309 hom a OneObj | 318 hom a OneObj |
310 ∎ ) ) where | 319 ∎ ) ) where |