Mercurial > hg > Members > kono > Proof > category
comparison HomReasoning.agda @ 455:55a9b6177ed4
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Mar 2017 14:58:40 +0900 |
parents | 3e44951b9bdb |
children | 961c236807f1 |
comparison
equal
deleted
inserted
replaced
454:2f07f4dd9a6d | 455:55a9b6177ed4 |
---|---|
70 idR : {a b : Obj A } { f : Hom A a b } → f o id a ≈ f | 70 idR : {a b : Obj A } { f : Hom A a b } → f o id a ≈ f |
71 idR = IsCategory.identityR (Category.isCategory A) | 71 idR = IsCategory.identityR (Category.isCategory A) |
72 | 72 |
73 sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f | 73 sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f |
74 sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) | 74 sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) |
75 | |
76 sym-hom = sym | |
75 | 77 |
76 -- working on another cateogry | 78 -- working on another cateogry |
77 idL1 : { c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A b a } → A [ A [ Id {_} {_} {_} {A} a o f ] ≈ f ] | 79 idL1 : { c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A b a } → A [ A [ Id {_} {_} {_} {A} a o f ] ≈ f ] |
78 idL1 A = IsCategory.identityL (Category.isCategory A) | 80 idL1 A = IsCategory.identityL (Category.isCategory A) |
79 | 81 |