Mercurial > hg > Members > kono > Proof > category
comparison freyd2.agda @ 645:5f26af3f1c00
start adjoint
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 03 Jul 2017 16:40:34 +0900 |
parents | 8e35703ef116 |
children | 4e0f0105a85d |
comparison
equal
deleted
inserted
replaced
644:8e35703ef116 | 645:5f26af3f1c00 |
---|---|
372 ≡⟨⟩ | 372 ≡⟨⟩ |
373 y | 373 y |
374 ∎ ) ) where | 374 ∎ ) ) where |
375 open import Relation.Binary.PropositionalEquality | 375 open import Relation.Binary.PropositionalEquality |
376 open ≡-Reasoning | 376 open ≡-Reasoning |
377 | |
378 | |
379 FunctorF : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) | |
380 (U : Functor A B ) | |
381 (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) | |
382 (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) | |
383 (LP : LimitPreserve A I B U ) | |
384 → Functor B A | |
385 FunctorF = {!!} | |
386 | |
387 nat-ε : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) | |
388 (U : Functor A B ) | |
389 (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) | |
390 (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) | |
391 (LP : LimitPreserve A I B U ) | |
392 → NTrans A A ( (FunctorF A B I comp U SFS PI LP) ○ U ) identityFunctor | |
393 nat-ε = {!!} | |
394 | |
395 nat-η : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) | |
396 (U : Functor A B ) | |
397 (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) | |
398 (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) | |
399 (LP : LimitPreserve A I B U ) | |
400 → NTrans B B identityFunctor (U ○ (FunctorF A B I comp U SFS PI LP) ) | |
401 nat-η = {!!} | |
402 | |
403 IsLeftAdjoint : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) | |
404 (U : Functor A B ) | |
405 (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) | |
406 (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) | |
407 (LP : LimitPreserve A I B U ) | |
408 → Adjunction B A U (FunctorF A B I comp U SFS PI LP) | |
409 (nat-η A B I comp U SFS PI LP) (nat-ε A B I comp U SFS PI LP) | |
410 IsLeftAdjoint = {!!} |