Mercurial > hg > Members > kono > Proof > category
comparison limit-to.agda @ 495:633df882db86
fryed1 done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 14 Mar 2017 13:08:03 +0900 |
parents | c257347a27f3 |
children | 3ce21b2a671a |
comparison
equal
deleted
inserted
replaced
494:ba6a67523523 | 495:633df882db86 |
---|---|
224 uniquness : (d : Obj A ) (h : Hom A d a ) → ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ] ) → | 224 uniquness : (d : Obj A ) (h : Hom A d a ) → ( fh=gh : A [ A [ f o h ] ≈ A [ g o h ] ] ) → |
225 ( k' : Hom A d c ) | 225 ( k' : Hom A d c ) |
226 → A [ A [ e o k' ] ≈ h ] → A [ k h fh=gh ≈ k' ] | 226 → A [ A [ e o k' ] ≈ h ] → A [ k h fh=gh ≈ k' ] |
227 uniquness d h fh=gh k' ek'=h = let open ≈-Reasoning A in begin | 227 uniquness d h fh=gh k' ek'=h = let open ≈-Reasoning A in begin |
228 k h fh=gh | 228 k h fh=gh |
229 ≈⟨ limit-uniqueness (isLimit lim) k' ( λ{i} → uniq-nat {i} d h k' fh=gh ek'=h ) ⟩ | 229 ≈⟨ limit-uniqueness (isLimit lim) ( λ{i} → uniq-nat {i} d h k' fh=gh ek'=h ) ⟩ |
230 k' | 230 k' |
231 ∎ | 231 ∎ |
232 | 232 |
233 | 233 |
234 --- Product from Limit ( given Discrete->A functor Γ and pnat : K -> Γ) | 234 --- Product from Limit ( given Discrete->A functor Γ and pnat : K -> Γ) |
288 pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( iproduct qi ) ] ≈ (qi i) ] | 288 pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( iproduct qi ) ] ≈ (qi i) ] |
289 pif=q {q} qi {i} = t0f=t (isLimit lim) {q} {pnat A S Γ qi } {i} | 289 pif=q {q} qi {i} = t0f=t (isLimit lim) {q} {pnat A S Γ qi } {i} |
290 ipu : {i : Obj D} → (q : Obj A) (h : Hom A q p ) → A [ A [ TMap (limit-u comp Γ) i o h ] ≈ A [ pi i o h ] ] | 290 ipu : {i : Obj D} → (q : Obj A) (h : Hom A q p ) → A [ A [ TMap (limit-u comp Γ) i o h ] ≈ A [ pi i o h ] ] |
291 ipu {i} q h = let open ≈-Reasoning A in refl-hom | 291 ipu {i} q h = let open ≈-Reasoning A in refl-hom |
292 ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ iproduct ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] | 292 ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ iproduct ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] |
293 ip-uniqueness {q} {h} = limit-uniqueness (isLimit lim) {q} {pnat A S Γ (λ i → A [ pi i o h ] )} h (ipu q h) | 293 ip-uniqueness {q} {h} = limit-uniqueness (isLimit lim) {q} {pnat A S Γ (λ i → A [ pi i o h ] )} (ipu q h) |
294 ipc : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } | 294 ipc : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } |
295 → (i : I ) → A [ qi i ≈ qi' i ] → | 295 → (i : I ) → A [ qi i ≈ qi' i ] → |
296 A [ A [ TMap (limit-u comp Γ) i o iproduct qi' ] ≈ TMap (pnat A S Γ qi) i ] | 296 A [ A [ TMap (limit-u comp Γ) i o iproduct qi' ] ≈ TMap (pnat A S Γ qi) i ] |
297 ipc {q} {qi} {qi'} i qi=qi' = let open ≈-Reasoning A in begin | 297 ipc {q} {qi} {qi'} i qi=qi' = let open ≈-Reasoning A in begin |
298 TMap (limit-u comp Γ) i o iproduct qi' | 298 TMap (limit-u comp Γ) i o iproduct qi' |
307 ≈⟨⟩ | 307 ≈⟨⟩ |
308 TMap (pnat A S Γ qi) i | 308 TMap (pnat A S Γ qi) i |
309 ∎ | 309 ∎ |
310 ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } | 310 ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } |
311 → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ iproduct qi ≈ iproduct qi' ] | 311 → ( ∀ (i : I ) → A [ qi i ≈ qi' i ] ) → A [ iproduct qi ≈ iproduct qi' ] |
312 ip-cong {q} {qi} {qi'} qi=qi' = limit-uniqueness (isLimit lim) {q} {pnat A S Γ qi} (iproduct qi' ) (λ {i} → ipc {q} {qi} {qi'} i (qi=qi' i)) | 312 ip-cong {q} {qi} {qi'} qi=qi' = limit-uniqueness (isLimit lim) {q} {pnat A S Γ qi} (λ {i} → ipc {q} {qi} {qi'} i (qi=qi' i)) |