Mercurial > hg > Members > kono > Proof > category
comparison SetsCompleteness.agda @ 500:6c993c1fe9de
try to make prodcut and equalizer in Sets
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Mar 2017 19:26:51 +0900 |
parents | |
children | 61daa68a70c4 |
comparison
equal
deleted
inserted
replaced
499:511fd37d90ec | 500:6c993c1fe9de |
---|---|
1 | |
2 open import Category -- https://github.com/konn/category-agda | |
3 open import Level | |
4 open import Category.Sets | |
5 | |
6 module SetsCompleteness where | |
7 | |
8 | |
9 open import HomReasoning | |
10 open import cat-utility | |
11 open import Relation.Binary.Core | |
12 open import Function | |
13 open import Data.Product | |
14 | |
15 | |
16 SetsProduct : { c₂ : Level} → CreateProduct ( Sets { c₂} ) | |
17 SetsProduct { c₂ } = record { | |
18 product = λ a b → a × b | |
19 ; π1 = λ a b → λ ab → (proj₁ ab) | |
20 ; π2 = λ a b → λ ab → (proj₂ ab) | |
21 ; isProduct = λ a b → record { | |
22 _×_ = λ f g x → ( f x , g x ) | |
23 ; π1fxg=f = refl | |
24 ; π2fxg=g = refl | |
25 ; uniqueness = refl | |
26 ; ×-cong = λ {c} {f} {f'} {g} {g'} f=f g=g → prod-cong a b f=f g=g | |
27 } | |
28 } where | |
29 prod-cong : ( a b : Obj (Sets {c₂}) ) {c : Obj (Sets {c₂}) } {f f' : Hom Sets c a } {g g' : Hom Sets c b } | |
30 → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] | |
31 → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ] | |
32 prod-cong a b {c} {f} {.f} {g} {.g} refl refl = refl | |
33 | |
34 | |
35 SetsEqualizer : { c₂ : Level} → {a b : Obj (Sets {c₂}) } (f g : Hom (Sets {c₂}) a b) → Equalizer Sets f g | |
36 SetsEqualizer f g = record { | |
37 equalizer-c = {!!} | |
38 ; equalizer = {!!} | |
39 ; isEqualizer = record { | |
40 fe=ge = {!!} | |
41 ; k = {!!} | |
42 ; ek=h = {!!} | |
43 ; uniqueness = {!!} | |
44 } | |
45 } | |
46 | |
47 | |
48 SetsLimit : { c₁' c₂' ℓ' : Level} { c₂ : Level} ( I : Category c₁' c₂' ℓ' ) → ( Γ : Functor I (Sets { c₂}) ) → Limit Sets I Γ | |
49 SetsLimit I Γ = record { | |
50 a0 = {!!} | |
51 ; t0 = {!!} | |
52 ; isLimit = record { | |
53 limit = {!!} | |
54 ; t0f=t = {!!} | |
55 ; limit-uniqueness = {!!} | |
56 } | |
57 } | |
58 | |
59 |