Mercurial > hg > Members > kono > Proof > category
comparison SetsCompleteness.agda @ 608:7194ba55df56
freyd2
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 12 Jun 2017 10:50:02 +0900 |
parents | caab94e897e6 |
children | 855e497a9c8f |
comparison
equal
deleted
inserted
replaced
607:caab94e897e6 | 608:7194ba55df56 |
---|---|
173 smap0 : { i j : OC } → (f : I ) → sobj i → sobj j | 173 smap0 : { i j : OC } → (f : I ) → sobj i → sobj j |
174 smap0 {i} {j} f x = smap f x | 174 smap0 {i} {j} f x = smap f x |
175 | 175 |
176 open snat | 176 open snat |
177 | 177 |
178 ≡cong2 : { c c' : Level } { A B : Set c } { C : Set c' } { a a' : A } { b b' : B } ( f : A → B → C ) | |
179 → a ≡ a' | |
180 → b ≡ b' | |
181 → f a b ≡ f a' b' | |
182 ≡cong2 _ refl refl = refl | |
183 | |
184 open import Relation.Binary.HeterogeneousEquality as HE renaming ( cong to cong' ; sym to sym' ; subst₂ to subst₂' ; Extensionality to Extensionality' ) | |
185 | |
178 snat-cong : { c : Level } { I OC : Set c } { SObj : OC → Set c } { SMap : { i j : OC } → (f : I )→ SObj i → SObj j } | 186 snat-cong : { c : Level } { I OC : Set c } { SObj : OC → Set c } { SMap : { i j : OC } → (f : I )→ SObj i → SObj j } |
179 ( s t : snat SObj SMap ) | 187 ( s t : snat SObj SMap ) |
180 → ( ( λ i → snmap s i ) ≡ ( λ i → snmap t i ) ) | 188 → ( ( λ i → snmap s i ) ≡ ( λ i → snmap t i ) ) |
181 → ( ( λ i j f → smap0 s f ( snmap s i ) ≡ snmap s j ) ≡ ( ( λ i j f → smap0 t f ( snmap t i ) ≡ snmap t j ) ) ) | 189 → ( ( λ i j f → smap0 s f ( snmap s i ) ≡ snmap s j ) ≡ ( ( λ i j f → smap0 t f ( snmap t i ) ≡ snmap t j ) ) ) |
182 → s ≡ t | 190 → s ≡ t |
183 snat-cong s t refl refl = {!!} | 191 snat-cong s t refl refl = {!!} |
184 | 192 |
185 open import HomReasoning | 193 open import HomReasoning |
186 open NTrans | 194 open NTrans |
236 ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] | 244 ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] |
237 limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin | 245 limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin |
238 limit1 a t x | 246 limit1 a t x |
239 ≡⟨⟩ | 247 ≡⟨⟩ |
240 record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } | 248 record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } |
241 ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq2 x ) ⟩ | 249 ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) {!!} ⟩ |
242 record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j f' → sncommute (f x ) i j f' } | 250 record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j f' → sncommute (f x ) i j f' } |
243 ≡⟨⟩ | 251 ≡⟨⟩ |
244 f x | 252 f x |
245 ∎ ) where | 253 ∎ ) where |
246 open import Relation.Binary.PropositionalEquality | 254 open import Relation.Binary.PropositionalEquality |