Mercurial > hg > Members > kono > Proof > category
comparison CCCGraph1.agda @ 861:9e6e44ae82be
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Apr 2020 13:00:59 +0900 |
parents | d3cf372ac8cd |
children | 0c65b4e54d3a |
comparison
equal
deleted
inserted
replaced
860:d3cf372ac8cd | 861:9e6e44ae82be |
---|---|
83 identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} | 83 identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} |
84 identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) | 84 identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) |
85 identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) | 85 identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) |
86 identityR {_} {_} {iv f (iv g h)} = refl | 86 identityR {_} {_} {iv f (iv g h)} = refl |
87 | 87 |
88 open import Data.Empty | |
89 open import Relation.Nullary | |
90 | |
91 assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g) | |
92 assoc-iv x (id a) g = refl | |
93 assoc-iv x (○ a) g = refl | |
94 assoc-iv π < f , f₁ > g = refl | |
95 assoc-iv π' < f , f₁ > g = refl | |
96 assoc-iv ε < f , f₁ > g = refl | |
97 assoc-iv (x *) < f , f₁ > g = refl | |
98 assoc-iv x (iv f g) h = {!!} | |
99 | |
88 ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g | 100 ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g |
89 ==←≡ eq = cong (λ k → eval k ) eq | 101 ==←≡ eq = cong (λ k → eval k ) eq |
90 | 102 |
91 PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) | 103 PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) |
92 PL = record { | 104 PL = record { |
111 associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → | 123 associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → |
112 (f ・ (g ・ h)) == ((f ・ g) ・ h) | 124 (f ・ (g ・ h)) == ((f ・ g) ・ h) |
113 associative (id a) g h = refl | 125 associative (id a) g h = refl |
114 associative (○ a) g h = refl | 126 associative (○ a) g h = refl |
115 associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) | 127 associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) |
116 associative {a} (iv x f) g h = {!!} | 128 associative {a} (iv π < f , f1 > ) g h = associative f g h |
129 associative {a} (iv π' < f , f1 > ) g h = associative f1 g h | |
130 associative {a} (iv ε < f , f1 > ) g h = cong ( λ k → iv ε k ) ( associative < f , f1 > g h ) | |
131 associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative < f , f1 > g h ) | |
132 associative {a} (iv x (id _)) g h = begin | |
133 eval (iv x (id _) ・ (g ・ h)) | |
134 ≡⟨⟩ | |
135 eval (iv x (g ・ h)) | |
136 ≡⟨ assoc-iv x g h ⟩ | |
137 eval (iv x g ・ h) | |
138 ≡⟨⟩ | |
139 eval ((iv x (id _) ・ g) ・ h) | |
140 ∎ where open ≡-Reasoning | |
141 associative {a} (iv x (○ _)) g h = refl | |
142 associative {a} (iv x (iv y f)) g h = begin | |
143 eval (iv x (iv y f) ・ (g ・ h)) | |
144 ≡⟨ sym (assoc-iv x (iv y f) ( g ・ h)) ⟩ | |
145 eval (iv x ((iv y f) ・ (g ・ h))) | |
146 ≡⟨ {!!} ⟩ | |
147 iv x (eval ((iv y f) ・ (g ・ h))) | |
148 ≡⟨ {!!} ⟩ | |
149 iv x (eval ((iv y f ・ g ) ・ h)) | |
150 ≡⟨ {!!} ⟩ | |
151 eval (iv x ((iv y f ・ g ) ・ h)) | |
152 ≡⟨ {!!} ⟩ | |
153 eval ((iv x (iv y f) ・ g) ・ h) | |
154 ∎ where open ≡-Reasoning | |
117 -- cong ( λ k → iv x k ) (associative f g h) | 155 -- cong ( λ k → iv x k ) (associative f g h) |
118 o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → | 156 o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → |
119 f == g → h == i → (h ・ f) == (i ・ g) | 157 f == g → h == i → (h ・ f) == (i ・ g) |
120 o-resp-≈ f=g h=i = {!!} | 158 o-resp-≈ f=g h=i = {!!} |