Mercurial > hg > Members > kono > Proof > category
comparison HomReasoning.agda @ 168:a9b4132d619b
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 20 Aug 2013 17:57:22 +0900 |
parents | 5435469c6cf0 |
children | 24e83b8b81be |
comparison
equal
deleted
inserted
replaced
167:c3863043c4a3 | 168:a9b4132d619b |
---|---|
115 → A [ A [ FMap G f o TMap η a ] ≈ A [ TMap η b o FMap F f ] ] | 115 → A [ A [ FMap G f o TMap η a ] ≈ A [ TMap η b o FMap F f ] ] |
116 nat η = IsNTrans.commute ( isNTrans η ) | 116 nat η = IsNTrans.commute ( isNTrans η ) |
117 | 117 |
118 infixr 2 _∎ | 118 infixr 2 _∎ |
119 infixr 2 _≈⟨_⟩_ _≈⟨⟩_ | 119 infixr 2 _≈⟨_⟩_ _≈⟨⟩_ |
120 infixr 2 _≈↑⟨_⟩_ | |
120 infix 1 begin_ | 121 infix 1 begin_ |
121 | 122 |
122 ------ If we have this, for example, as an axiom of a category, we can use ≡-Reasoning directly | 123 ------ If we have this, for example, as an axiom of a category, we can use ≡-Reasoning directly |
123 -- ≈-to-≡ : {a b : Obj A } { x y : Hom A a b } → A [ x ≈ y ] → x ≡ y | 124 -- ≈-to-≡ : {a b : Obj A } { x y : Hom A a b } → A [ x ≈ y ] → x ≡ y |
124 -- ≈-to-≡ refl-hom = refl | 125 -- ≈-to-≡ refl-hom = refl |
132 begin relTo x≈y = x≈y | 133 begin relTo x≈y = x≈y |
133 | 134 |
134 _≈⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → | 135 _≈⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → |
135 x ≈ y → y IsRelatedTo z → x IsRelatedTo z | 136 x ≈ y → y IsRelatedTo z → x IsRelatedTo z |
136 _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) | 137 _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) |
138 | |
139 _≈↑⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → | |
140 y ≈ x → y IsRelatedTo z → x IsRelatedTo z | |
141 _ ≈↑⟨ y≈x ⟩ relTo y≈z = relTo (trans-hom ( sym y≈x ) y≈z) | |
137 | 142 |
138 _≈⟨⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y : Hom A a b } → x IsRelatedTo y → x IsRelatedTo y | 143 _≈⟨⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y : Hom A a b } → x IsRelatedTo y → x IsRelatedTo y |
139 _ ≈⟨⟩ x∼y = x∼y | 144 _ ≈⟨⟩ x∼y = x∼y |
140 | 145 |
141 _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x | 146 _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x |