Mercurial > hg > Members > kono > Proof > category
comparison monoid-monad.agda @ 143:bbaaca9b21ce
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Aug 2013 18:07:27 +0900 |
parents | 94796ddb9570 |
children | 0948df8c88b8 |
comparison
equal
deleted
inserted
replaced
142:94796ddb9570 | 143:bbaaca9b21ce |
---|---|
75 } | 75 } |
76 } | 76 } |
77 | 77 |
78 open NTrans | 78 open NTrans |
79 | 79 |
80 Lemma-MM32 : ∀{ℓ} {a : Set ℓ } -> {f g : a -> a } -> {x : a } -> ( f ≡ g ) -> ( ( λ x → f x ) ≡ ( λ x → g x ) ) | 80 --Lemma-MM32 : ∀{ℓ} {a : Set ℓ } -> {f g : a -> a } -> {x : a } -> ( f ≡ g ) -> ( ( λ x → f x ) ≡ ( λ x → g x ) ) |
81 Lemma-MM32 eq = cong ( \f -> \x -> f x ) eq | 81 --Lemma-MM32 eq = cong ( \f -> \x -> f x ) eq |
82 | |
83 --Lemma-MM31 : ( a : Obj ( Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) ) -> {x : FObj T a } → (((Mono ∙ ε Mono) (proj₁ x) , proj₂ x ) ≡ x ) | |
84 --Lemma-MM31 a = {!!} | |
82 | 85 |
83 Lemma-MM33 : {a : Level} {b : Level} {A : Set a} {B : A → Set b} {x : Σ A B } → (((proj₁ x) , proj₂ x ) ≡ x ) | 86 Lemma-MM33 : {a : Level} {b : Level} {A : Set a} {B : A → Set b} {x : Σ A B } → (((proj₁ x) , proj₂ x ) ≡ x ) |
84 Lemma-MM33 = _≡_.refl | 87 Lemma-MM33 = _≡_.refl |
85 | 88 |
86 Lemma-M-34 : ( x : Carrier Mono ) -> _≈_ Mono ((_∙_ Mono (ε Mono) x)) x | 89 Lemma-M-34 : { x : Carrier Mono } -> _≈_ Mono ((_∙_ Mono (ε Mono) x)) x |
87 Lemma-M-34 = proj₁ ( IsMonoid.identity ( isMonoid Mono ) ) | 90 Lemma-M-34 {x} = ( proj₁ ( IsMonoid.identity ( isMonoid Mono )) ) x |
88 | |
89 Lemma-MM31 : ( a : Obj ( Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) ) -> {x : FObj T a } → (((Mono ∙ ε Mono) (proj₁ x) , proj₂ x ) ≡ x ) | |
90 Lemma-MM31 a = {!!} | |
91 | 91 |
92 MonoidMonad : Monad (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) T η μ | 92 MonoidMonad : Monad (Sets {c ⊔ c₁ ⊔ c₂ ⊔ ℓ }) T η μ |
93 MonoidMonad = record { | 93 MonoidMonad = record { |
94 isMonad = record { | 94 isMonad = record { |
95 unity1 = \{a} -> Lemma-MM3 {a} ; | 95 unity1 = \{a} -> Lemma-MM3 {a} ; |