Mercurial > hg > Members > kono > Proof > category
comparison SetsCompleteness.agda @ 525:cb35d6b25559
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Mar 2017 10:18:08 +0900 |
parents | d6739779b4ac |
children | b035cd3be525 |
comparison
equal
deleted
inserted
replaced
524:d6739779b4ac | 525:cb35d6b25559 |
---|---|
132 lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → | 132 lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → |
133 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) | 133 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) |
134 lemma5 refl x = refl -- somehow this is not equal to lemma1 | 134 lemma5 refl x = refl -- somehow this is not equal to lemma1 |
135 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → | 135 uniqueness : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → |
136 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] | 136 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh ≈ k' ] |
137 uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → | 137 uniqueness {d} {h} {fh=gh} {k'} ek'=h = extensionality Sets ( λ ( x : d ) → begin |
138 elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ) | 138 k h fh=gh x |
139 ≡⟨ elm-cong ( k h fh=gh x) ( k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x ) ⟩ | |
140 k' x | |
141 ∎ ) where | |
142 open import Relation.Binary.PropositionalEquality | |
143 open ≡-Reasoning | |
144 | |
139 | 145 |
140 open Functor | 146 open Functor |
141 open NTrans | 147 open NTrans |
142 | 148 |
143 record ΓObj { c₂ } ( I : Set c₂ ) : Set c₂ where | 149 record ΓObj { c₂ } ( I : Set c₂ ) : Set c₂ where |
163 cong1 : {A B : Obj Sets} {f g : Hom Sets A B} → Sets [ f ≈ g ] → Sets [ map (fmap f) ≈ map (fmap g) ] | 169 cong1 : {A B : Obj Sets} {f g : Hom Sets A B} → Sets [ f ≈ g ] → Sets [ map (fmap f) ≈ map (fmap g) ] |
164 cong1 refl = refl | 170 cong1 refl = refl |
165 | 171 |
166 open IProduct | 172 open IProduct |
167 | 173 |
174 record slim { c₂ } ( sobj : Set c₂ → Set c₂ ) ( smap : { a b : Set c₂ } ( f : a → b ) → Set c₂ ) : Set c₂ where | |
175 | |
168 SetsLimit : { c₂ : Level} → Limit Sets Sets Γ | 176 SetsLimit : { c₂ : Level} → Limit Sets Sets Γ |
169 SetsLimit { c₂} = record { | 177 SetsLimit { c₂} = record { |
170 a0 = {!!} | 178 a0 = slim ΓObj ΓMap |
171 ; t0 = record { | 179 ; t0 = record { |
172 TMap = λ i → Sets [ proj i o e i ] | 180 TMap = λ i → Sets [ proj i o e i ] |
173 ; isNTrans = record { commute = {!!} } | 181 ; isNTrans = record { commute = {!!} } |
174 } | 182 } |
175 ; isLimit = record { | 183 ; isLimit = record { |
178 ; limit-uniqueness = {!!} | 186 ; limit-uniqueness = {!!} |
179 } | 187 } |
180 } where | 188 } where |
181 eqa : {i j : Obj Sets} (f : Hom Sets i j) → sequ (Obj Sets) (Obj Sets) {!!} {!!} -- {!!} {!!} (FMap Γ f o proj i) ( proj j ) | 189 eqa : {i j : Obj Sets} (f : Hom Sets i j) → sequ (Obj Sets) (Obj Sets) {!!} {!!} -- {!!} {!!} (FMap Γ f o proj i) ( proj j ) |
182 eqa f = {!!} | 190 eqa f = {!!} |
183 e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets ( sequ {!!} {!!} {!!} {!!} )) i ) (iproduct (Obj Sets) (λ I → ΓObj (Obj Sets))) | 191 e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets (slim ΓObj ΓMap)) i ) (iproduct (slim ΓObj ΓMap) (λ I → ΓObj (slim ΓObj ΓMap))) |
184 e i = λ x → record { pi1 = λ i → record { obj = sequ ? {!!} {!!} {!!} } } | 192 e i = λ x → record { pi1 = λ j → record { obj = record {}} } |
185 proj : (i : Obj Sets) → ( prod : iproduct (Obj Sets) (λ i → ΓObj (Obj Sets) )) → FObj Γ i | 193 proj : (i : Obj Sets) → ( prod : iproduct (slim ΓObj ΓMap) (λ i → ΓObj (slim ΓObj ΓMap))) → FObj Γ i |
186 proj i prod = record { obj = {!!} } | 194 proj i prod = record { obj = ? } |
187 comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → {!!} ) ] ≈ | 195 comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → {!!} ) ] ≈ |
188 Sets [ (λ lim → {!!}) o FMap (K Sets Sets {!!}) f ] ] | 196 Sets [ (λ lim → {!!}) o FMap (K Sets Sets {!!}) f ] ] |
189 comm1 {a} {b} {f} = {!!} | 197 comm1 {a} {b} {f} = {!!} |