Mercurial > hg > Members > kono > Proof > category
comparison CCCGraph1.agda @ 881:da0a1dd0c2ee
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Apr 2020 17:29:45 +0900 |
parents | 543ceeb10191 |
children | 6c69d48e6015 |
comparison
equal
deleted
inserted
replaced
880:543ceeb10191 | 881:da0a1dd0c2ee |
---|---|
132 o-resp-≈ = λ {a b c f g h i} → ore {a} {b} {c} f g h i ; | 132 o-resp-≈ = λ {a b c f g h i} → ore {a} {b} {c} f g h i ; |
133 associative = λ{a b c d f g h } → cong (λ k → eval k ) (associative f g h ) | 133 associative = λ{a b c d f g h } → cong (λ k → eval k ) (associative f g h ) |
134 } | 134 } |
135 } where | 135 } where |
136 iv-e : { a b c : Objs } → (x : Arrow b c ) ( g : Arrows a b ) → eval (iv x g) ≡ iv x (eval g) | 136 iv-e : { a b c : Objs } → (x : Arrow b c ) ( g : Arrows a b ) → eval (iv x g) ≡ iv x (eval g) |
137 iv-e = ? | 137 iv-e = {!!} |
138 iv-e-arrow : { a : Objs } → {b c : vertex G } → (x : edge G b c ) ( g : Arrows a (atom b) ) | |
139 → eval (iv (arrow x) g) ≡ iv (arrow x) (eval g) | |
140 iv-e-arrow x (id (atom _)) = refl | |
141 iv-e-arrow x (iv f g) with eval (iv f g) | |
142 iv-e-arrow x (iv f g) | id (atom _) = refl | |
143 iv-e-arrow x (iv f g) | iv f₁ t = refl | |
138 iv-d : { a b c : Objs } → (x : Arrow b c ) ( g : Arrows a b ) → eval (iv x g) ≡ eval (iv x (eval g)) | 144 iv-d : { a b c : Objs } → (x : Arrow b c ) ( g : Arrows a b ) → eval (iv x g) ≡ eval (iv x (eval g)) |
139 iv-d (arrow x) g = begin | 145 iv-d (arrow x) g = begin |
140 eval (iv (arrow x) g) | 146 eval (iv (arrow x) g) |
141 ≡⟨ {!!} ⟩ | 147 ≡⟨ iv-e-arrow x g ⟩ |
142 iv (arrow x) (eval g) | 148 iv (arrow x) (eval g) |
143 ≡⟨ {!!} ⟩ | 149 ≡⟨ cong (λ k → iv (arrow x) k ) ( sym ( idem-eval g) ) ⟩ |
150 iv (arrow x) (eval (eval g)) | |
151 ≡⟨ sym (iv-e-arrow x (eval g)) ⟩ | |
144 eval (iv (arrow x) (eval g)) | 152 eval (iv (arrow x) (eval g)) |
145 ∎ where open ≡-Reasoning | 153 ∎ where open ≡-Reasoning |
146 iv-d π (id _) = refl | 154 iv-d π (id _) = refl |
147 iv-d π < g , g₁ > = sym (idem-eval g) | 155 iv-d π < g , g₁ > = sym (idem-eval g) |
148 iv-d π (iv f g) = {!!} | 156 iv-d π (iv f g) = {!!} |