Mercurial > hg > Members > kono > Proof > category
comparison equalizer.agda @ 252:e0835b8dd51b
comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 09 Sep 2013 16:15:09 +0900 |
parents | 40947f08bab6 |
children | 24e83b8b81be |
comparison
equal
deleted
inserted
replaced
251:40947f08bab6 | 252:e0835b8dd51b |
---|---|
206 ≈⟨ cdr ( ek=h keqa ) ⟩ | 206 ≈⟨ cdr ( ek=h keqa ) ⟩ |
207 e' o id1 A c' | 207 e' o id1 A c' |
208 ≈⟨ idR ⟩ | 208 ≈⟨ idR ⟩ |
209 e' | 209 e' |
210 ∎ | 210 ∎ |
211 | |
212 -- e←e' e'←e = e | |
213 -- e'←e e←e = e' is enough for isomorphism but we want to prove l o r = id also. | |
211 | 214 |
212 c-iso→ : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) | 215 c-iso→ : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' : Equalizer A e' f g ) |
213 → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) | 216 → ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ]) (A [ g o e' ]) ) |
214 → A [ A [ c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa ] ≈ id1 A c' ] | 217 → A [ A [ c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa ] ≈ id1 A c' ] |
215 c-iso→ {c} {c'} {a} {b} {f} {g} eqa eqa' keqa = let open ≈-Reasoning (A) in begin | 218 c-iso→ {c} {c'} {a} {b} {f} {g} eqa eqa' keqa = let open ≈-Reasoning (A) in begin |