Mercurial > hg > Members > kono > Proof > category
comparison CCChom.agda @ 808:e4cc2ccd0f06
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Apr 2019 19:50:27 +0900 |
parents | 91a2efb67462 |
children | 0976d576f5f6 |
comparison
equal
deleted
inserted
replaced
807:91a2efb67462 | 808:e4cc2ccd0f06 |
---|---|
635 fmap : {G : SM} { a b : Obj (DX G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b | 635 fmap : {G : SM} { a b : Obj (DX G) } → Hom (DX G) a b → fobj {G} a → fobj {G} b |
636 fmap {G} {a} {a} (id a) = λ z → z | 636 fmap {G} {a} {a} (id a) = λ z → z |
637 fmap {G} {a} {(atom b)} (next {a} {c} (arrow x) f) = λ z → smap G x ( k z ) where | 637 fmap {G} {a} {(atom b)} (next {a} {c} (arrow x) f) = λ z → smap G x ( k z ) where |
638 k : fobj a → fobj {G} c | 638 k : fobj a → fobj {G} c |
639 k z = fmap f z | 639 k z = fmap f z |
640 fmap {G} {a} {b} (next (id b) f) = fmap f | 640 fmap {G} {a} {b} (next (id b) f) = λ z → k z where |
641 k : fobj a → fobj {G} b | |
642 k z = fmap f z | |
641 fmap {G} {a} {⊤} (next (○ b) f) = λ _ → OneObj' | 643 fmap {G} {a} {⊤} (next (○ b) f) = λ _ → OneObj' |
642 fmap {G} {a} {b} (next {a} {x ∧ y} {b} π f) = λ z → proj₁ ( k z ) where | 644 fmap {G} {a} {b} (next {a} {x ∧ y} {b} π f) = λ z → proj₁ ( k z ) where |
643 k : fobj a → fobj x /\ fobj y | 645 k : fobj a → fobj x /\ fobj y |
644 k z = fmap f z | 646 k z = fmap f z |
645 fmap {G} {a} {b} (next {.a} {x ∧ y} π' f) = λ z → proj₂ ( k z ) where | 647 fmap {G} {a} {b} (next {.a} {x ∧ y} π' f) = λ z → proj₂ ( k z ) where |
646 k : fobj a → fobj x /\ fobj y | 648 k : fobj a → fobj x /\ fobj y |
647 k z = fmap f z | 649 k z = fmap f z |
648 fmap {G} {a} {b} (next {.a} {(x <= y) ∧ y} {.b} ε f) = λ z → ( proj₁ (k z))( proj₂ (k z)) where | 650 fmap {G} {a} {b} (next {.a} {(x <= y) ∧ y} {.b} ε f) = λ z → ( proj₁ (k z))( proj₂ (k z)) where |
649 k : fobj a → (fobj y → fobj x) /\ fobj y | 651 k : fobj a → (fobj y → fobj x) /\ fobj y |
650 k z = fmap f z | 652 k z = fmap f z |
651 fmap {G} {a} {b} (next {.a} {c} (_・_ {c} {d} {b} f g) h) = λ z → fmap ( next f (id d)) ( fmap (next g (id c )) ( fmap h z )) | 653 fmap {G} {a} {b} (next (f ・ g ) h) = {!!} -- λ z → fmap (next f (next g h )) z |
652 fmap {G} {a} {(_ ∧ _)} (next < f , g > h) = λ z → ( fmap (next f h) z , fmap (next g h) z) | 654 fmap {G} {a} {(_ ∧ _)} (next < f , g > h) = λ z → ( fmap (next f h) z , fmap (next g h) z) |
653 fmap {G} {a} {(c <= b)} (next {_} {d} (f *) g ) = λ x y → fmap (next f (id (d ∧ b))) ( fmap g x , y ) | 655 fmap {G} {a} {(c <= b)} (next {_} {d} (f *) g ) = {!!} -- λ x y → fmap (next f (id (d ∧ b))) ( fmap g x , y ) |
654 | 656 |
655 CS : {G : SM } → Functor (DX G) (Sets {Level.zero}) | 657 CS : {G : SM } → Functor (DX G) (Sets {Level.zero}) |
656 FObj CS a = fobj a | 658 FObj CS a = fobj a |
657 FMap (CS {G}) {a} {b} f = fmap {G} {a} {b} f | 659 FMap (CS {G}) {a} {b} f = fmap {G} {a} {b} f |
658 isFunctor (CS {G}) = isf where | 660 isFunctor (CS {G}) = isf where |