Mercurial > hg > Members > kono > Proof > category
comparison limit-to.agda @ 352:f589e71875ea
bad approach
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 24 Dec 2014 22:16:20 +0900 |
parents | 1306fbc8290b |
children | d255a929815f |
comparison
equal
deleted
inserted
replaced
351:1306fbc8290b | 352:f589e71875ea |
---|---|
34 unique-obj : ∀{two : Two } → obj← ( obj two ) ≡ two | 34 unique-obj : ∀{two : Two } → obj← ( obj two ) ≡ two |
35 unique-obj1 : ∀{i : Obj I } → obj ( obj← i ) ≡ i | 35 unique-obj1 : ∀{i : Obj I } → obj ( obj← i ) ≡ i |
36 unique-map : ∀{two : Two } → map← ( map two ) ≡ two | 36 unique-map : ∀{two : Two } → map← ( map two ) ≡ two |
37 unique-map1 : ∀{f : Hom I (obj t0) (obj t1) } → map ( map← f ) ≡ f | 37 unique-map1 : ∀{f : Hom I (obj t0) (obj t1) } → map ( map← f ) ≡ f |
38 | 38 |
39 | |
40 open Limit | 39 open Limit |
41 open TwoCat | 40 open TwoCat |
41 | |
42 record two-Γ {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) | |
43 (a b : Obj A) (f g : Hom A a b ) | |
44 (two : Two) (twocat : TwoCat I two ) (Γ : Functor I A) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
45 field | |
46 a0 : FObj Γ (obj twocat t0 ) ≡ a | |
47 b0 : FObj Γ (obj twocat t1 ) ≡ b | |
48 f0 : A [ FMap Γ (map twocat t0 ) ≈ f ] | |
49 g0 : A [ FMap Γ (map twocat t0 ) ≈ g ] | |
42 | 50 |
43 lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) | 51 lim-to-equ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) |
44 (two : Two ) | 52 (two : Two ) |
45 (twocat : TwoCat I two) | 53 (twocat : TwoCat I two) |
54 (Γ : Functor I A) | |
46 (lim : ( Γ : Functor I A ) → { a0 : Obj A } { u : NTrans I A ( K A I a0 ) Γ } → Limit A I Γ a0 u ) -- completeness | 55 (lim : ( Γ : Functor I A ) → { a0 : Obj A } { u : NTrans I A ( K A I a0 ) Γ } → Limit A I Γ a0 u ) -- completeness |
47 → {a b c : Obj A} (f g : Hom A a b) → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g | 56 → {a b c : Obj A} (f g : Hom A a b) → (e : Hom A c a ) → (fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ] ) → Equalizer A e f g |
48 lim-to-equ {c₁} A I two twocat lim {a} {b} {c} f g e fe=ge = record { | 57 lim-to-equ {c₁} A I two twocat Γ lim {a} {b} {c} f g e fe=ge = record { |
49 fe=ge = fe=ge | 58 fe=ge = fe=ge |
50 ; k = λ {d} h fh=gh → k {d} h fh=gh | 59 ; k = λ {d} h fh=gh → k {d} h fh=gh |
51 ; ek=h = λ {d} {h} {fh=gh} → {!!} | 60 ; ek=h = λ {d} {h} {fh=gh} → {!!} |
52 ; uniqueness = λ {d} {h} {fh=gh} {k'} → {!!} | 61 ; uniqueness = λ {d} {h} {fh=gh} {k'} → {!!} |
53 } where | 62 } where |
54 Γobj : Two {c₁} → Obj A | |
55 Γobj t0 = a | |
56 Γobj t1 = b | |
57 Γmap : Two {c₁} → Hom A a b | |
58 Γmap t0 = f | |
59 Γmap t1 = g | |
60 Γ : Functor I A | |
61 Γ = record { | |
62 FObj = λ x → Γobj (obj← twocat x) ; | |
63 FMap = λ f → {!!} ; | |
64 isFunctor = record { | |
65 ≈-cong = {!!} ; | |
66 identity = {!!} ; | |
67 distr = {!!} | |
68 } | |
69 } | |
70 nat : (d : Obj A) → NTrans I A (K A I d) Γ | 63 nat : (d : Obj A) → NTrans I A (K A I d) Γ |
71 nat d = record { | 64 nat d = record { |
72 TMap = λ x → {!!} ; | 65 TMap = λ x → {!!} ; |
73 isNTrans = record { | 66 isNTrans = record { |
74 commute = {!!} | 67 commute = {!!} |