Mercurial > hg > Members > kono > Proof > category
comparison src/list-nat0.agda @ 1124:f683d96fbc93 default tip
safe fix done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2024 22:28:50 +0900 |
parents | ac53803b3b2a |
children |
comparison
equal
deleted
inserted
replaced
1123:b6ab443f7a43 | 1124:f683d96fbc93 |
---|---|
1 {-# OPTIONS --cubical-compatible --safe #-} | |
1 module list-nat0 where | 2 module list-nat0 where |
2 | 3 |
3 open import Level | 4 open import Level |
4 | 5 |
5 | 6 data i3 : Set where |
6 postulate a : Set | 7 a : i3 |
7 postulate b : Set | 8 b : i3 |
8 postulate c : Set | 9 c : i3 |
9 | 10 |
10 | 11 |
11 infixr 40 _::_ | 12 infixr 40 _::_ |
12 data List {a} (A : Set a) : Set a where | 13 data List {a} (A : Set a) : Set a where |
13 [] : List A | 14 [] : List A |
57 | 58 |
58 cong1 : ∀{a} {A : Set a } {b} { B : Set b } → | 59 cong1 : ∀{a} {A : Set a } {b} { B : Set b } → |
59 ( f : A → B ) → {x : A } → {y : A} → x ≡ y → f x ≡ f y | 60 ( f : A → B ) → {x : A } → {y : A} → x ≡ y → f x ≡ f y |
60 cong1 f refl = refl | 61 cong1 f refl = refl |
61 | 62 |
62 lemma11 : ∀{n} → ( Set n ) IsRelatedTo ( Set n ) | 63 -- lemma11 : ∀{n} → ( Set n ) IsRelatedTo ( Set n ) |
63 lemma11 = relTo refl | 64 -- lemma11 = relTo refl |
64 | 65 |
65 lemma12 : {L : Set} ( x : List L ) → x ++ x ≡ x ++ x | 66 lemma12 : {L : Set} ( x : List L ) → x ++ x ≡ x ++ x |
66 lemma12 x = begin x ++ x ∎ | 67 lemma12 x = begin x ++ x ∎ |
67 | 68 |
68 | 69 |