Mercurial > hg > Members > kono > Proof > category
diff nat.agda @ 4:05087d3aeac0
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 08:50:32 +0900 |
parents | dce706edd66b |
children | 16572013c362 |
line wrap: on
line diff
--- a/nat.agda Sat Jul 06 07:27:57 2013 +0900 +++ b/nat.agda Sat Jul 06 08:50:32 2013 +0900 @@ -137,15 +137,27 @@ -- f ○ η(a) = f -record Kleisli { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } +record Kleisli { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) + ( T : Functor A A ) + ( η : NTrans A A identityFunctor T ) + ( μ : NTrans A A (T ○ T) T ) + ( M : Monad A T η μ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + join : { a b : Obj A } -> ( c : Obj A ) -> + ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) + join c g f = A [ Trans μ c o A [ FMap T g o f ] ] + +open Kleisli +Lemma7 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } - { M : Monad A T η μ } : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where - infix 9 _*_ - _*_ : { a b c : Obj A } -> - ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) - g * f = A [ Trans μ ({!!} (Category.cod A g)) o A [ FMap T g o f ] ] + { a b : Obj A } + { f : Hom A a ( FObj T b) } + { M : Monad A T η μ } + ( K : Kleisli A T η μ M) + -> A [ join ? ? ? ≈ f ] +Lemma7 = \m -> {!!} +