Mercurial > hg > Members > kono > Proof > category
diff monoid-monad.agda @ 137:05aa165f3e6f
dead end?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Aug 2013 11:42:09 +0900 |
parents | a9f5cfbbc0fa |
children | 293e3e8c43dd |
line wrap: on
line diff
--- a/monoid-monad.agda Tue Aug 13 10:57:41 2013 +0900 +++ b/monoid-monad.agda Tue Aug 13 11:42:09 2013 +0900 @@ -29,19 +29,27 @@ T1M (T1a m _) = m T1M (T1t m _) = m +tobj : ( a : T1 M A ) -> {m' : Carrier M } -> T1 M A +tobj (T1a m a) {m'} = T1t m' ( T1a m a ) +tobj (T1t m t) {m'} = T1t m' ( T1t m t ) record T1Hom (a : T1 M A ) (b : T1 M A) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field T1Map : Hom A (T1Obj a) (T1Obj b ) + P : Hom A (T1Obj (tobj a {T1M a}) ) (T1Obj a) + Q : Hom A (T1Obj b ) (T1Obj (tobj b {T1M b}) ) open T1Hom _∘_ : { a b c : T1 M A } -> T1Hom b c -> T1Hom a b -> T1Hom a c -_∘_ g f = record { T1Map = A [ T1Map g o T1Map f ] } +_∘_ g f = record { T1Map = A [ T1Map g o T1Map f ] ; + P = P f; + Q = Q g + } infixr 9 _∘_ -T1-id : {a : T1 M A} → T1Hom a a -T1-id {a = a} = record { T1Map = id1 A (T1Obj a) } +T1-id : {a : T1 M A} → {p : Hom A (T1Obj (tobj a {T1M a}) ) (T1Obj a)} -> {q : Hom A (T1Obj a ) (T1Obj (tobj a {T1M a}) )} -> T1Hom a a +T1-id {a = a} {p} {q} = record { T1Map = id1 A (T1Obj a) ; P = p; Q = q } open import Relation.Binary.Core @@ -76,19 +84,14 @@ ; isCategory = isT1Category } -tobj : ( a : T1 M A ) -> {m' : Carrier M } -> T1 M A -tobj (T1a m a) {m'} = T1t m' ( T1a m a ) -tobj (T1t m t) {m'} = T1t m' ( T1t m t ) - -tfmap1 : (a b : T1 M A ) (m m' : Carrier M ) ( f : Hom A (T1Obj a) (T1Obj b) ) -> Hom A (T1Obj (tobj a)) (T1Obj (tobj b)) -tfmap1 (T1a m a) b _ m' f = ? -tfmap1 (T1t m t) b _ m' f = ? - -- T(f) (m,a) = (m, f(a) ) -- T(f) = \(m,a) -> (m, f(a) ) -- fmap f = T1 m a -> T1 m (f a) -tfmap : {a b : T1 M A } {m m' : Carrier M} ( f : T1Hom a b ) -> T1Hom (tobj a {m} ) (tobj b {m'} ) -tfmap {a} {b} {m} {m'} f = record { T1Map = tfmap1 a b m m' (T1Map f) } +tfmap : {a b : T1 M A } ( f : T1Hom a b ) -> T1Hom (tobj a {T1M a} ) (tobj b {T1M b} ) +tfmap {a} {b} f = record { T1Map = A [ Q f o A [ (T1Map f) o P f ] ] ; + P = ? ; + Q = ? + } T : Functor T1Category T1Category T = record {