diff cat-utility.agda @ 101:0f7086b6a1a6

on going ...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 31 Jul 2013 15:17:15 +0900
parents 4fa718e4fd77
children 5f331dfc000b
line wrap: on
line diff
--- a/cat-utility.agda	Tue Jul 30 17:58:20 2013 +0900
+++ b/cat-utility.agda	Wed Jul 31 15:17:15 2013 +0900
@@ -19,10 +19,10 @@
                          ( _* : { a : Obj A}{ b : Obj B} → ( Hom A a (FObj U b) ) →  Hom B (F a ) b )
                          : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
            field
-               universalMapping :   {a' : Obj A} { b' : Obj B } → { f : Hom A a' (FObj U b') } → 
-                             A [ A [ FMap U ( f * ) o  η a' ]  ≈ f ]
-               uniquness :   {a' : Obj A} { b' : Obj B } → { f : Hom A a' (FObj U b') } → { g :  Hom B (F a') b' } → 
-                             A [ A [ FMap U g o  η a' ]  ≈ f ] → B [ f * ≈ g ]
+               universalMapping :   {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → 
+                             A [ A [ FMap U ( f * ) o  η a ]  ≈ f ]
+               uniquness :   {a : Obj A} { b : Obj B } → { f : Hom A a (FObj U b) } → { g :  Hom B (F a) b } → 
+                             A [ A [ FMap U g o  η a ]  ≈ f ] → B [ f * ≈ g ]
 
         record UniversalMapping  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                          ( U : Functor B A )