Mercurial > hg > Members > kono > Proof > category
diff pullback.agda @ 686:14ad6ec8a662
fix comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Nov 2017 19:57:33 +0900 |
parents | f5f582ae20bb |
children | a5f2ca67e7c5 |
line wrap: on
line diff
--- a/pullback.agda Wed Nov 08 08:40:11 2017 +0900 +++ b/pullback.agda Wed Nov 08 19:57:33 2017 +0900 @@ -46,15 +46,15 @@ uniqueness = uniqueness1 } } where - ab : Obj A - ab = Product.product (prod0 a b) - π1 : Hom A ab a + axb : Obj A + axb = Product.product (prod0 a b) + π1 : Hom A axb a π1 = Product.π1 (prod0 a b ) - π2 : Hom A ab b + π2 : Hom A axb b π2 = Product.π2 (prod0 a b ) d : Obj A d = equalizer-c (eqa (A [ f o π1 ]) (A [ g o π2 ])) - e : Hom A d ab + e : Hom A d axb e = equalizer (eqa (A [ f o π1 ]) (A [ g o π2 ])) prod = Product.isProduct (prod0 a b) commute1 : A [ A [ f o A [ π1 o e ] ] @@ -300,6 +300,7 @@ ∎ +-- another form of uniqueness of a product lemma-p0 : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( prod : IsProduct A a b ab π1 π2 ) → A [ _×_ prod π1 π2 ≈ id1 A ab ] lemma-p0 a b ab π1 π2 prod = let open ≈-Reasoning (A) in begin @@ -319,27 +320,28 @@ -- limit from equalizer and product -- -- Γu --- Γ j ----→ Γ k --- ↑ ^ ↑ ↑ --- | | | |proj k --- | |mu u |mu u --- | | | | --- | product of Hom i --- | ↑ ↑ | K u = id lim --- | | | | --- | f|id g|λ u → Γ u d = K j -----------→ K k = d --- proj j | | | | | u | --- | | | | proj j o e = ε j | | ε k = proj k o e --- product of Obj i -+ mu u o g o e | | mu u o f o e --- ^ | | +-- +--→ Γ j → Γ k ←--+ +-- | ↑ ↑ | +-- proj j | | | |proj k +-- | μu| |μu | +-- | | | | +-- |product of Hom I | +-- | ↑ ↑ | K u = id lim +-- | f(id)} | | +-- | | |g(Γ) | lim = K j -----------→ K k = lim +-- | | | | | u | +-- | | | | proj j o e = ε j | | ε k = proj k o e +-- product of Obj I μ u o g o e | | μ u o f o e +-- ↑ | | -- | e = equalizer f g | | -- | ↓ ↓ --- lim ←---------------- d' a j = Γ j -----------→ Γ k = a j +-- lim ←---------------- d' Γ j ----------→ Γ k -- k ( product pi ) Γ u -- Γ u o ε j = ε k -- -- homprod should be written by IProduct +-- If I is locally small, this is iso to a set record homprod {c : Level } : Set (suc c₁' ⊔ suc c₂' ) where field hom-j : Obj I @@ -383,8 +385,8 @@ proj = pi ( prod (FObj Γ) ) prodΓ = isIProduct ( prod (FObj Γ) ) -- projection of the product of Hom I - mu : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) - mu u = pi (prod Fcod ) (Homprod u) + μ : {j k : Obj I} → (u : Hom I j k ) → Hom A (iprod (prod Fcod)) (Fcod (Homprod u)) + μ u = pi (prod Fcod ) (Homprod u) cone-ε : NTrans I A (K A I (equalizer-c equ-ε ) ) Γ cone-ε = record { TMap = λ i → tmap i ; @@ -401,13 +403,13 @@ ≈⟨ assoc ⟩ ( FMap Γ u o pi (prod (FObj Γ)) j ) o e ≈↑⟨ car ( pif=q (isIProduct (prod Fcod )) ) ⟩ - ( mu u o g ) o e + ( μ u o g ) o e ≈↑⟨ assoc ⟩ - mu u o (g o e ) + μ u o (g o e ) ≈⟨ cdr ( fe=ge (isEqualizer equ-ε )) ⟩ - mu u o (f o e ) + μ u o (f o e ) ≈⟨ assoc ⟩ - (mu u o f ) o e + (μ u o f ) o e ≈⟨ car ( pif=q (isIProduct (prod Fcod ))) ⟩ pi (prod (FObj Γ)) k o e ≈⟨⟩