Mercurial > hg > Members > kono > Proof > category
diff universal-mapping.agda @ 31:17b8bafebad7
add universal mapping
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Jul 2013 14:30:27 +0900 |
parents | |
children | 7862ad3b000f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/universal-mapping.agda Mon Jul 22 14:30:27 2013 +0900 @@ -0,0 +1,29 @@ +module universal-mapping where + +open import Category -- https://github.com/konn/category-agda +open import Level +open import Category.HomReasoning + +open Functor +record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') + ( U : Functor B A ) + ( F : Obj A -> Obj B ) + ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) + ( _* : { a : Obj A}{ b : Obj B} -> ( Hom A a (FObj U b) ) -> Hom B (F a ) b ) + : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where + field + universalMapping : {a' : Obj A} { b' : Obj B } -> ( f : Hom A a' (FObj U b') ) -> + A [ A [ FMap U ( f * ) o η a' ] ≈ f ] + + +record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') + ( U : Functor B A ) + ( F : Obj A -> Obj B ) + ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) + ( _* : { a : Obj A}{ b : Obj B} -> ( Hom A a (FObj U b) ) -> Hom B (F a ) b ) + : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where + field + isUniversalMapping : IsUniversalMapping A B U F η _* + + +