Mercurial > hg > Members > kono > Proof > category
diff yoneda.agda @ 203:1c16d18a8d67
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 01 Sep 2013 15:21:53 +0900 |
parents | 58ee98bbb333 |
children | b2874c5086ea |
line wrap: on
line diff
--- a/yoneda.agda Sun Sep 01 13:26:30 2013 +0900 +++ b/yoneda.agda Sun Sep 01 15:21:53 2013 +0900 @@ -277,11 +277,11 @@ ≡⟨ extensionality (λ g → ( begin FMap F g (TMap ha a (Category.Category.Id A)) - ≡⟨ Relation.Binary.PropositionalEquality.cong (λ f → f (Category.Category.Id A)) (IsNTrans.commute (isNTrans ha)) ⟩ + ≡⟨ ≡-cong (λ f → f (Category.Category.Id A)) (IsNTrans.commute (isNTrans ha)) ⟩ TMap ha b (FMap (y-obj a) g (Category.Category.Id A)) ≡⟨⟩ TMap ha b ( (A Category.o Category.Category.Id A) g ) - ≡⟨ Relation.Binary.PropositionalEquality.cong ( TMap ha b ) ( ≈-≡ (IsCategory.identityL ( Category.isCategory A ))) ⟩ + ≡⟨ ≡-cong ( TMap ha b ) ( ≈-≡ (IsCategory.identityL ( Category.isCategory A ))) ⟩ TMap ha b g ∎ )) ⟩ @@ -304,6 +304,9 @@ dom-equivalence : {a b : Obj A} → {f g : Hom A a b} → A [ f ≈ g ] → Category.dom A f ≡ Category.dom A g dom-equivalence eq = refl +-- dom-equivalence1 : {a b : Obj A} → {f : Hom A a a} -> {g : Hom A a b} → A [ f ≈ g ] → Category.dom A f ≡ Category.dom A g +-- dom-equivalence1 eq = ? + equive-elm : ∀{n} {a b : Set n} → (f : a ) → a ≡ b → b equive-elm f refl = f @@ -313,10 +316,19 @@ -- equive-hom : {a b : Obj A } → {f : Hom A a b } → Hom A a b ≡ Hom A a a → a ≡ b -- equive-hom {a} {b} {f} eq = {!!} ---YondaLemma2 : {a b : Obj A } → (λ x → FObj (FObj YonedaFunctor a) x) ≡ (λ x → FObj (FObj YonedaFunctor b ) x) → --- {f : Hom A a b } → a ≡ b ---YondaLemma2 {a} {b} eq {f} = ≡-cong (Category.cod ? ) eq +inv : {a x : Obj A} ( f : FObj (FObj YonedaFunctor a) x ) → Obj A +inv {a} {x} f = Category.cod A f + +--YondaLemma2 : {a b : Obj A } → (λ x → FObj (FObj YonedaFunctor a) x) ≡ (λ x → FObj (FObj YonedaFunctor b ) x) → +-- a ≡ b +--YondaLemma2 {a} {b} eq = ≡-cong inv ? --- inv-yobj = {a x : Obj A} → Category.cod A (( FObj (FObj YonedaFunctor a) x)) +inv-yobj : {a x : Obj A} → Hom A a x → Obj A +inv-yobj {a} {x} _ = a + +YonedaLemma21 : (a x : Obj A) { f : ( FObj (FObj YonedaFunctor a) x) } → Category.cod A f ≡ a +YonedaLemma21 a x {f} = refl + +--- f ≡ g f x ≡ g x -- I cannot prove this, please help.