Mercurial > hg > Members > kono > Proof > category
diff nat.agda @ 0:302941542c0f
category agda
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 00:34:08 +0900 |
parents | |
children | 73b780d13f60 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/nat.agda Sat Jul 06 00:34:08 2013 +0900 @@ -0,0 +1,94 @@ + + +module nat where + + +-- Monad +-- Category A + +-- A = Category + +-- Functor T : A -> A + + + +--T(a) = t(a) +--T(f) = tf(f) + +--T(g f) = T(g) T(f) + +open import Category +open import Level +open Functor + +Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) -> {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } + -> A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] +Lemma1 = \t -> IsFunctor.distr ( isFunctor t ) + + + + +-- F(f) +-- F(a) ----> F(b) +-- | | +-- |t(a) |t(b) G(f)t(a) = t(b)F(f) +-- | | +-- v v +-- G(a) ----> G(b) +-- G(f) + +record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′) + ( F G : Functor D C ) + (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A)) + : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where + field + naturality : {a b : Obj D} {f : Hom D a b} + → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ] +-- how to write uniquness? +-- uniqness : {d : Obj D} +-- → ∃{e : Trans d} -> ∀{a : Trans d} → C [ e ≈ a ] + + +record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) + : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where + field + Trans : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A) + isNTrans : IsNTrans domain codomain F G Trans + +open NTrans +Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A} -> (μ : NTrans A A F G) -> {a b : Obj A} { f : Hom A a b } + -> A [ A [ FMap G f o Trans μ a ] ≈ A [ Trans μ b o FMap F f ] ] +Lemma2 = \n -> IsNTrans.naturality ( isNTrans n ) + +open import Category.Cat + +record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + ( T : Functor A A ) + ( η : NTrans A A (identityFunctor) T ) + ( μ : NTrans A A T (T ○ T)) + : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + field + unity1 : {a b : Obj A} + → A [ A [ ( Trans μ a ) o ( Trans η a) ] ≈ Id A a ] + +-- η : 1_A -> T +-- μ : TT -> T +-- μ(a)η(T(a)) = a +-- μ(a)T(η(a)) = a +-- μ(a)(μ(T(a))) = μ(a)T(μ(a)) + + + + + +-- nat of η + + +-- g ○ f = μ(c) T(g) f + +-- h ○ (g ○ f) = (h ○ g) ○ f + +-- η(b) ○ f = f +-- f ○ η(a) = f + +