Mercurial > hg > Members > kono > Proof > category
diff src/CCC.agda @ 1097:321f0fef54c2
add Todo
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 31 Jul 2021 06:58:48 +0900 |
parents | 0211d99f29fc |
children | 45de2b31bf02 |
line wrap: on
line diff
--- a/src/CCC.agda Wed May 19 09:00:25 2021 +0900 +++ b/src/CCC.agda Sat Jul 31 06:58:48 2021 +0900 @@ -230,14 +230,19 @@ -- Sub Object Classifier as Topos -- pull back on -- +-- m ∙ f ≈ m ∙ g → f ≈ g +-- -- iso ○ b --- e ⇐====⇒ b -----------→ 1 m ∙ f ≈ m ∙ g → f ≈ g +-- e ⇐====⇒ b -----------→ 1 -- | | | -- | m | | ⊤ --- | ↓ char m ↓ Ker h = Equalizer (char m mono) (⊤ ∙ ○ a ) --- + ------→ a -----------→ Ω m = Equalizer (char m mono) (⊤ ∙ ○ a ) +-- | ↓ char m ↓ +-- + ------→ a -----------→ Ω -- ker h h -- +-- Ker h = Equalizer (char m mono) (⊤ ∙ ○ a ) +-- m = Equalizer (char m mono) (⊤ ∙ ○ a ) +-- -- if m is an equalizer, there is an iso between e and b as k, and if we have the iso, m becomes an equalizer. -- equalizer.equalizerIso : {a b c : Obj A} → (f g : Hom A a b ) → (equ : Equalizer A f g ) -- → (m : Hom A c a) → ( ker-iso : IsoL A m (equalizer equ) ) → IsEqualizer A m f g @@ -251,10 +256,9 @@ ker-m : {a b : Obj A} → (m : Hom A b a ) → (mono : Mono A m) → IsEqualizer A m (char m mono) (A [ ⊤ o (CCC.○ c a) ]) char-uniqueness : {a b : Obj A } {h : Hom A a Ω} → A [ char (equalizer (Ker h)) (record { isMono = λ f g → monic (Ker h)}) ≈ h ] - -- char-iso : {a a' b : Obj A} → (p : Hom A a b ) (q : Hom A a' b ) → (mp : Mono A p) →(mq : Mono A q) → - -- Iso A a a' → A [ char p mp ≈ char q mq ] char-iso : {a a' b : Obj A} → (p : Hom A a b ) (q : Hom A a' b ) → (mp : Mono A p) →(mq : Mono A q) → (i : Iso A a a' ) → A [ p ≈ A [ q o Iso.≅→ i ] ] → A [ char p mp ≈ char q mq ] + -- this means, char m is unique among all equalizers of h and ○ a char-cong : {a b : Obj A } { m m' : Hom A b a } { mono : Mono A m } { mono' : Mono A m' } → A [ m ≈ m' ] → A [ char m mono ≈ char m' mono' ] char-cong {a} {b} {m} {m'} {mo} {mo'} m=m' = char-iso m m' mo mo' (≡-iso A _) ( begin