diff HomReasoning.agda @ 781:340708e8d54f

fix for 2.5.4.2
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 08 Mar 2019 17:46:59 +0900
parents 984518c56e96
children ca5eba647990
line wrap: on
line diff
--- a/HomReasoning.agda	Mon Oct 08 16:48:27 2018 +0900
+++ b/HomReasoning.agda	Fri Mar 08 17:46:59 2019 +0900
@@ -6,7 +6,6 @@
 open import Level
 open Functor
 
-
 --        F(f)
 --   F(a) ---→ F(b)
 --    |          |
@@ -82,8 +81,9 @@
   idR1 :  { c₁ c₂ ℓ : Level}  (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b } →  A [ A [ f o Id {_} {_} {_} {A} a ] ≈ f  ]
   idR1 A =  IsCategory.identityR (Category.isCategory A)
 
+  open import Relation.Binary.PropositionalEquality using ( _≡_ )
   ≈←≡ : {a b : Obj A } { x y : Hom A a b } →  (x≈y : x ≡ y ) → x ≈ y
-  ≈←≡  refl = refl-hom
+  ≈←≡  _≡_.refl = refl-hom
 
 -- Ho← to prove this?
 --  ≡←≈ : {a b : Obj A } { x y : Hom A a b } →  (x≈y : x ≈ y ) → x ≡ y
@@ -91,7 +91,7 @@
 
   ≡-cong : { c₁′ c₂′ ℓ′ : Level}  {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A }  →
              (f : Hom B x y → Hom A x' y' ) →  a ≡ b  → f a  ≈  f b
-  ≡-cong f refl =  ≈←≡ refl
+  ≡-cong f _≡_.refl =  ≈←≡ _≡_.refl
 
 --  cong-≈ :  { c₁′ c₂′ ℓ′ : Level}  {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A }  → 
 --             B [ a ≈ b ] → (f : Hom B x y → Hom A x' y' ) →  f a ≈ f b