diff src/Polynominal.agda @ 968:3a096cb82dc4

Polynominal category and functional completeness begin coMonad and coKleisli category
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 25 Feb 2021 18:50:06 +0900
parents
children 6548572b7089
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Polynominal.agda	Thu Feb 25 18:50:06 2021 +0900
@@ -0,0 +1,75 @@
+open import Category
+open import CCC
+open import Level
+open import HomReasoning
+open import cat-utility
+
+module Polynominal { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { S : Functor A A } (SM : coMonad A S) where
+
+        open coMonad 
+
+        open Functor
+        open NTrans
+
+        --
+        --  Hom in Sleisli Category
+        --
+
+        record SHom (a : Obj A)  (b : Obj A)
+              : Set c₂ where
+            field
+                SMap :  Hom A ( FObj S a ) b
+
+        open SHom 
+
+        S-id :  (a : Obj A) → SHom a a
+        S-id a = record { SMap =  TMap (ε SM) a }
+
+        open import Relation.Binary
+
+        _⋍_ : { a : Obj A } { b : Obj A } (f g  : SHom a b ) → Set ℓ 
+        _⋍_ {a} {b} f g = A [ SMap f ≈ SMap g ]
+
+        _*_ : { a b c : Obj A } → ( SHom b c) → (  SHom a b) → SHom a c 
+        _*_ {a} {b} {c} g f = record { SMap = coJoin SM {a} {b} {c} (SMap g) (SMap f) }
+
+        isSCat : IsCategory ( Obj A ) SHom _⋍_ _*_ (λ {a} → S-id a)
+        isSCat  = record  { isEquivalence =  isEquivalence 
+                            ; identityL =   SidL
+                            ; identityR =   SidR
+                            ; o-resp-≈ =    So-resp
+                            ; associative = Sassoc
+                            }
+             where
+                 open ≈-Reasoning A 
+                 isEquivalence :  { a b : Obj A } → IsEquivalence {_} {_} {SHom a b} _⋍_
+                 isEquivalence {C} {D} = record { refl  = refl-hom ; sym   = sym ; trans = trans-hom } 
+                 SidL : {a b : Obj A} → {f : SHom a b} → (S-id _ * f) ⋍ f
+                 SidL {a} {b} {f} =  begin
+                     SMap (S-id _ * f)  ≈⟨⟩
+                     (TMap (ε SM) b o (FMap S (SMap f))) o TMap (δ SM) a ≈↑⟨ car (nat (ε SM)) ⟩
+                     (SMap f o TMap (ε SM) (FObj S a)) o TMap (δ SM) a ≈↑⟨ assoc ⟩
+                      SMap f o TMap (ε SM) (FObj S a) o TMap (δ SM) a  ≈⟨ cdr (IsCoMonad.unity1 (isCoMonad SM)) ⟩
+                      SMap f o id1 A _  ≈⟨ idR ⟩
+                      SMap f ∎ 
+                 SidR : {C D : Obj A} → {f : SHom C D} → (f * S-id _ ) ⋍ f
+                 SidR {a} {b} {f} =  begin
+                       SMap (f * S-id a) ≈⟨⟩
+                       (SMap f o FMap S (TMap (ε SM) a)) o TMap (δ SM) a ≈↑⟨ assoc ⟩
+                       SMap f o (FMap S (TMap (ε SM) a) o TMap (δ SM) a) ≈⟨ cdr (IsCoMonad.unity2 (isCoMonad SM)) ⟩
+                       SMap f o id1 A _ ≈⟨ idR ⟩
+                      SMap f ∎ 
+                 So-resp :  {a b c : Obj A} → {f g : SHom a b } → {h i : SHom  b c } → 
+                                  f ⋍ g → h ⋍ i → (h * f) ⋍ (i * g)
+                 So-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = resp refl-hom (resp (fcong S eq-fg ) eq-hi )
+                 Sassoc :   {a b c d : Obj A} → {f : SHom c d } → {g : SHom b c } → {h : SHom a b } →
+                                  (f * (g * h)) ⋍ ((f * g) * h)
+                 Sassoc {a} {b} {c} {d} {f} {g} {h} =  begin
+                       SMap  (f * (g * h)) ≈⟨ car (cdr (distr S))  ⟩
+                       {!!} ≈⟨ {!!} ⟩
+                       SMap  ((f * g) * h) ∎ 
+
+        SCat : Category c₁ c₂ ℓ
+        SCat = record { Obj = Obj A ; Hom = SHom ; _o_ = _*_ ; _≈_ = _⋍_ ; Id  = λ {a} → S-id a ; isCategory = isSCat }
+
+-- end