Mercurial > hg > Members > kono > Proof > category
diff freyd.agda @ 636:3e663c7f88c4
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Jun 2017 23:36:54 +0900 |
parents | d36ff598a063 |
children | 959954fc29f8 |
line wrap: on
line diff
--- a/freyd.agda Fri Jun 30 21:52:14 2017 +0900 +++ b/freyd.agda Fri Jun 30 23:36:54 2017 +0900 @@ -34,7 +34,7 @@ record HasInitialObject {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (i : Obj A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field initial : ∀( a : Obj A ) → Hom A i a - uniqueness : ( a : Obj A ) → ( f : Hom A i a ) → A [ f ≈ initial a ] + uniqueness : { a : Obj A } → ( f : Hom A i a ) → A [ f ≈ initial a ] -- A complete catagory has initial object if it has PreInitial-SmallFullSubcategory @@ -53,7 +53,7 @@ (PI : PreInitial A (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS)) initialFromPreInitialFullSubcategory A comp SFS PI = record { initial = initialArrow ; - uniqueness = λ a f → lemma1 a f + uniqueness = λ {a} f → lemma1 a f } where F : Functor A A F = SFSF SFS