diff discrete.agda @ 466:44bd77c80555

clean up
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 04 Mar 2017 16:57:58 +0900
parents 8436a018f88a
children c375d8f93a2c
line wrap: on
line diff
--- a/discrete.agda	Sat Mar 04 16:26:57 2017 +0900
+++ b/discrete.agda	Sat Mar 04 16:57:58 2017 +0900
@@ -21,19 +21,19 @@
 --     missing arrows are constrainted by TwoHom data
 
 data TwoHom {c₁ c₂ : Level } : TwoObject {c₁}  → TwoObject {c₁} → Set c₂ where
-   id-t0 : TwoHom t0 t0
-   id-t1 : TwoHom t1 t1
+   id-t0 :    TwoHom t0 t0
+   id-t1 :    TwoHom t1 t1
    arrow-f :  TwoHom t0 t1
    arrow-g :  TwoHom t0 t1
 
 
 _×_ :  ∀ {c₁  c₂}  → {a b c : TwoObject {c₁}} →  TwoHom {c₁} {c₂} b c  →  TwoHom {c₁} {c₂} a b   →  TwoHom {c₁} {c₂} a c 
-_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-f   =   arrow-f 
-_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-g  =   arrow-g 
-_×_ {_}  {_}  {t1} {t1} {t1}  id-t1   id-t1    =   id-t1 
-_×_ {_}  {_}  {t0} {t0} {t1}  arrow-f   id-t0    =   arrow-f 
-_×_ {_}  {_}  {t0} {t0} {t1}  arrow-g   id-t0    =   arrow-g 
-_×_ {_}  {_}  {t0} {t0} {t0}  id-t0   id-t0    =   id-t0 
+_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-f  = arrow-f 
+_×_ {_}  {_}  {t0} {t1} {t1}  id-t1   arrow-g  = arrow-g 
+_×_ {_}  {_}  {t1} {t1} {t1}  id-t1   id-t1    = id-t1 
+_×_ {_}  {_}  {t0} {t0} {t1}  arrow-f id-t0    = arrow-f 
+_×_ {_}  {_}  {t0} {t0} {t1}  arrow-g id-t0    = arrow-g 
+_×_ {_}  {_}  {t0} {t0} {t0}  id-t0   id-t0    = id-t0 
 
 open TwoHom
 
@@ -43,24 +43,22 @@
 --   It can be proved without TwoHom constraints
 
 assoc-× :   {c₁  c₂ : Level } {a b c d : TwoObject  {c₁} }
-       {f : (TwoHom {c₁}  {c₂ } c d )} →
-       {g : (TwoHom b c )} →
-       {h : (TwoHom a b )} →
+       {f : (TwoHom {c₁}  {c₂ } c d )} → {g : (TwoHom b c )} → {h : (TwoHom a b )} →
        ( f × (g × h)) ≡ ((f × g) × h )
-assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0   }{ id-t0   }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0   }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0   }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-f }{ id-t0  } = refl
-assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-g }{ id-t0  } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t0} {t0} { id-t0   }{ id-t0   }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-f }{ id-t0   }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t0} {t1} { arrow-g }{ id-t0   }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-f }{ id-t0   } = refl
+assoc-× {c₁} {c₂} {t0} {t0} {t1} {t1} { id-t1   }{ arrow-g }{ id-t0   } = refl
 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ arrow-f } = refl
 assoc-× {c₁} {c₂} {t0} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ arrow-g } = refl
-assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ id-t1  } = refl
+assoc-× {c₁} {c₂} {t1} {t1} {t1} {t1} { id-t1   }{ id-t1   }{ id-t1   } = refl
 
 TwoId :  {c₁  c₂ : Level } (a : TwoObject  {c₁} ) →  (TwoHom {c₁}  {c₂ } a a )
 TwoId {_} {_} t0 = id-t0 
 TwoId {_} {_} t1 = id-t1 
 
-open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong )
+open import Relation.Binary.PropositionalEquality 
 
 TwoCat : {c₁ c₂ : Level  } →  Category   c₁  c₂  c₂
 TwoCat   {c₁}  {c₂} = record {