Mercurial > hg > Members > kono > Proof > category
diff src/CCCSets.agda @ 1068:4e58611b1fb1
fix 1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 29 Apr 2021 11:16:18 +0900 |
parents | 40c39d3e6a75 |
children | 849f85e543f1 |
line wrap: on
line diff
--- a/src/CCCSets.agda Tue Apr 27 10:24:04 2021 +0900 +++ b/src/CCCSets.agda Thu Apr 29 11:16:18 2021 +0900 @@ -241,6 +241,31 @@ ... | false | record { eq = eq1 } with tchar¬Img m mono (m x) eq1 ... | t = ⊥-elim (t (isImage x)) + open import Polynominal (Sets {c} ) (sets {c}) + A = Sets {c} + Ω = Bool + 1 = One + ⊤ = λ _ → true + ○ = λ _ → λ _ → ! + _⊢_ : {a b : Obj A} (p : Poly a Ω b ) (q : Poly a Ω b ) → Set (suc c ) + _⊢_ {a} {b} p q = {c : Obj A} (h : Hom A c b ) → A [ Poly.f p o h ≈ ⊤ o ○ c ] + → A [ Poly.f q ∙ h ≈ ⊤ o ○ c ] + tl01 : {a b : Obj A} (p : Poly a Ω b ) (q : Poly a Ω b ) + → p ⊢ q → q ⊢ p → A [ Poly.f p ≈ Poly.f q ] + tl01 {a} {b} p q p<q q<p = extensionality Sets t1011 where + open ≡-Reasoning + t1011 : (s : b ) → Poly.f p s ≡ Poly.f q s + t1011 x with Poly.f p x | inspect ( Poly.f p) x + ... | true | record { eq = eq1 } = sym tt1 where + tt1 : Poly.f q _ ≡ true + tt1 = cong (λ k → k !) (p<q _ ( extensionality Sets (λ x → eq1) )) + ... | false | record { eq = eq1 } with Poly.f q x | inspect (Poly.f q) x + ... | true | record { eq = eq2 } = ⊥-elim ( ¬x≡t∧x≡f record { fst = eq1 ; snd = tt1 } ) where + tt1 : Poly.f p _ ≡ true + tt1 = cong (λ k → k !) (q<p _ ( extensionality Sets (λ x → eq2) )) + ... | false | eq2 = refl + + open import graph module ccc-from-graph {c₁ c₂ : Level } (G : Graph {c₁} {c₂}) where