Mercurial > hg > Members > kono > Proof > category
diff HomReasoning.agda @ 152:5435469c6cf0
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 17 Aug 2013 21:08:33 +0900 |
parents | 945f26ed12d5 |
children | a9b4132d619b |
line wrap: on
line diff
--- a/HomReasoning.agda Sat Aug 17 20:59:31 2013 +0900 +++ b/HomReasoning.agda Sat Aug 17 21:08:33 2013 +0900 @@ -73,7 +73,6 @@ sym : {a b : Obj A } { f g : Hom A a b } → f ≈ g → g ≈ f sym = IsEquivalence.sym (IsCategory.isEquivalence (Category.isCategory A)) - sym-hom = sym -- How to prove this? ≡-≈ : {a b : Obj A } { x y : Hom A a b } → (x≈y : x ≡ y ) → x ≈ y ≡-≈ refl = refl-hom @@ -81,8 +80,8 @@ -- ≈-≡ : {a b : Obj A } { x y : Hom A a b } → (x≈y : x ≈ y ) → x ≡ y -- ≈-≡ x≈y = irr x≈y ≡-cong : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } → - (f : Hom B x y → Hom A x' y' ) → a ≡ b → f a ≈ f b - ≡-cong f refl = ≡-≈ refl + a ≡ b → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b + ≡-cong refl f = ≡-≈ refl -- cong-≈ : { c₁′ c₂′ ℓ′ : Level} {B : Category c₁′ c₂′ ℓ′} {x y : Obj B } { a b : Hom B x y } {x' y' : Obj A } → -- B [ a ≈ b ] → (f : Hom B x y → Hom A x' y' ) → f a ≈ f b @@ -116,7 +115,7 @@ → A [ A [ FMap G f o TMap η a ] ≈ A [ TMap η b o FMap F f ] ] nat η = IsNTrans.commute ( isNTrans η ) - infixr 2 _∎ + infixr 2 _∎ infixr 2 _≈⟨_⟩_ _≈⟨⟩_ infix 1 begin_ @@ -136,20 +135,12 @@ x ≈ y → y IsRelatedTo z → x IsRelatedTo z _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) - - _≈↑⟨_⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → - y ≈ x → y IsRelatedTo z → x IsRelatedTo z - _≈↑⟨_⟩_ _ x≈y (relTo y≈z) = relTo (trans-hom (sym x≈y) y≈z) - - infixr 2 _≈↑⟨_⟩_ - _≈⟨⟩_ : { a b : Obj A } ( x : Hom A a b ) → { y : Hom A a b } → x IsRelatedTo y → x IsRelatedTo y _ ≈⟨⟩ x∼y = x∼y _∎ : { a b : Obj A } ( x : Hom A a b ) → x IsRelatedTo x _∎ _ = relTo refl-hom - -- an example Lemma61 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) →