Mercurial > hg > Members > kono > Proof > category
diff adj-monad.agda @ 130:5f331dfc000b
remove Kleisli record
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 08 Aug 2013 22:05:41 +0900 |
parents | cbc30519e961 |
children | a5f2ca67e7c5 |
line wrap: on
line diff
--- a/adj-monad.agda Sat Aug 03 10:12:00 2013 +0900 +++ b/adj-monad.agda Thu Aug 08 22:05:41 2013 +0900 @@ -32,7 +32,7 @@ Functor*Nat A {B} A U {( F ○ U) ○ F} {identityFunctor ○ F} ( Nat*Functor A {B} B { F ○ U} {identityFunctor} ε F) ) where lemma11 : NTrans A A ( U ○ ((F ○ U) ○ F )) ( U ○ (identityFunctor ○ F) ) → NTrans A A (( U ○ F ) ○ ( U ○ F )) ( U ○ F ) - lemma11 n = record { TMap = \a → TMap n a; isNTrans = record { naturality = IsNTrans.naturality ( isNTrans n ) }} + lemma11 n = record { TMap = \a → TMap n a; isNTrans = record { commute = IsNTrans.commute ( isNTrans n ) }} Adj2Monad : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') { U : Functor B A } @@ -53,7 +53,7 @@ μ = UεF A B U F ε lemma-assoc1 : {a b : Obj B} → ( f : Hom B a b) → B [ B [ f o TMap ε a ] ≈ B [ TMap ε b o FMap F (FMap U f ) ] ] - lemma-assoc1 f = IsNTrans.naturality ( isNTrans ε ) + lemma-assoc1 f = IsNTrans.commute ( isNTrans ε ) assoc1 : {a : Obj A} → A [ A [ TMap μ a o TMap μ ( FObj T a ) ] ≈ A [ TMap μ a o FMap T (TMap μ a) ] ] assoc1 {a} = let open ≈-Reasoning (A) in begin