Mercurial > hg > Members > kono > Proof > category
diff universal-mapping.agda @ 130:5f331dfc000b
remove Kleisli record
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 08 Aug 2013 22:05:41 +0900 |
parents | 51f653bd9656 |
children | 0be3e0a49cca |
line wrap: on
line diff
--- a/universal-mapping.agda Sat Aug 03 10:12:00 2013 +0900 +++ b/universal-mapping.agda Thu Aug 08 22:05:41 2013 +0900 @@ -221,9 +221,9 @@ } where F' : Functor A B F' = FunctorF A B um - naturality : {a b : Obj A} {f : Hom A a b} + commute : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap U (FMap F' f)) o ( η a ) ] ≈ A [ (η b ) o f ] ] - naturality {a} {b} {f} = let open ≈-Reasoning (A) in + commute {a} {b} {f} = let open ≈-Reasoning (A) in begin (FMap U (FMap F' f)) o ( η a ) ≈⟨⟩ @@ -232,7 +232,7 @@ (η b ) o f ∎ myIsNTrans : IsNTrans A A identityFunctor ( U ○ F' ) η - myIsNTrans = record { naturality = naturality } + myIsNTrans = record { commute = commute } nat-ε : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') { U : Functor B A } @@ -280,9 +280,9 @@ ≈⟨ cdr ( IsUniversalMapping.universalMapping ( isUniversalMapping um)) ⟩ FMap U f o id (FObj U a ) ∎ - naturality : {a b : Obj B} {f : Hom B a b } + commute : {a b : Obj B} {f : Hom B a b } → B [ B [ f o (ε a) ] ≈ B [(ε b) o (FMap F' (FMap U f)) ] ] - naturality {a} {b} {f} = let open ≈-Reasoning (B) in + commute {a} {b} {f} = let open ≈-Reasoning (B) in sym ( begin ε b o (FMap F' (FMap U f)) ≈⟨⟩ @@ -297,7 +297,7 @@ f o (ε a) ∎ ) myIsNTrans : IsNTrans B B ( F' ○ U ) identityFunctor ε - myIsNTrans = record { naturality = naturality } + myIsNTrans = record { commute = commute } ------ --