Mercurial > hg > Members > kono > Proof > category
diff cat-utility.agda @ 312:702adc45704f
is this right direction?
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jan 2014 23:37:12 +0900 |
parents | d6a6dd305da2 |
children | c483374f542b |
line wrap: on
line diff
--- a/cat-utility.agda Sun Jan 05 19:34:11 2014 +0900 +++ b/cat-utility.agda Sun Jan 05 23:37:12 2014 +0900 @@ -231,3 +231,37 @@ pi1 = π1 pi2 : Hom A ab b pi2 = π2 + + -- + -- Limit + -- + ----- + + -- Constancy Functor + + K : { c₁' c₂' ℓ' : Level} (A : Category c₁' c₂' ℓ') { c₁'' c₂'' ℓ'' : Level} ( I : Category c₁'' c₂'' ℓ'' ) + → ( a : Obj A ) → Functor I A + K A I a = record { + FObj = λ i → a ; + FMap = λ f → id1 A a ; + isFunctor = let open ≈-Reasoning (A) in record { + ≈-cong = λ f=g → refl-hom + ; identity = refl-hom + ; distr = sym idL + } + } + + + record Limit { c₁' c₂' ℓ' : Level} { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I A ) + ( a0 : Obj A ) ( t0 : NTrans I A ( K A I a0 ) Γ ) : Set (suc (c₁' ⊔ c₂' ⊔ ℓ' ⊔ c₁ ⊔ c₂ ⊔ ℓ )) where + field + limit : ( a : Obj A ) → ( t : NTrans I A ( K A I a ) Γ ) → Hom A a a0 + t0f=t : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → ∀ { i : Obj I } → + A [ A [ TMap t0 i o limit a t ] ≈ TMap t i ] + limit-uniqueness : { a : Obj A } → { t : NTrans I A ( K A I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → + A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit a t ≈ f ] + A0 : Obj A + A0 = a0 + T0 : NTrans I A ( K A I a0 ) Γ + T0 = t0 +