Mercurial > hg > Members > kono > Proof > category
diff pullback.agda @ 672:749df4959d19
fix completeness
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Nov 2017 09:00:01 +0900 |
parents | 3ce21b2a671a |
children | 0007f9a25e9c |
line wrap: on
line diff
--- a/pullback.agda Mon Oct 30 18:18:36 2017 +0900 +++ b/pullback.agda Thu Nov 02 09:00:01 2017 +0900 @@ -28,14 +28,14 @@ open Equalizer open IsEqualizer -open Product +open IsProduct open Pullback pullback-from : (a b c ab d : Obj A) ( f : Hom A a c ) ( g : Hom A b c ) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( e : Hom A d ab ) ( eqa : {a b c : Obj A} → (f g : Hom A a b) → {e : Hom A c a } → IsEqualizer A e f g ) - ( prod : Product A a b ab π1 π2 ) → Pullback A a b c d f g + ( prod : IsProduct A a b ab π1 π2 ) → Pullback A a b c d f g ( A [ π1 o equalizer1 ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ) ] ) ( A [ π2 o equalizer1 ( eqa ( A [ f o π1 ] ) ( A [ g o π2 ] ) ) ] ) pullback-from a b c ab d f g π1 π2 e eqa prod = record { @@ -118,7 +118,7 @@ e o p' ≈⟨⟩ equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p' - ≈↑⟨ Product.uniqueness prod ⟩ + ≈↑⟨ IsProduct.uniqueness prod ⟩ (prod × ( π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p') ) ( π2 o (equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) o p')) ≈⟨ ×-cong prod (assoc) (assoc) ⟩ (prod × (A [ A [ π1 o equalizer1 (eqa (A [ f o π1 ]) (A [ g o π2 ])) ] o p' ])) @@ -289,13 +289,13 @@ ∎ -lemma-p0 : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( prod : Product A a b ab π1 π2 ) → +lemma-p0 : (a b ab : Obj A) ( π1 : Hom A ab a ) ( π2 : Hom A ab b ) ( prod : IsProduct A a b ab π1 π2 ) → A [ _×_ prod π1 π2 ≈ id1 A ab ] lemma-p0 a b ab π1 π2 prod = let open ≈-Reasoning (A) in begin _×_ prod π1 π2 ≈↑⟨ ×-cong prod idR idR ⟩ _×_ prod (A [ π1 o id1 A ab ]) (A [ π2 o id1 A ab ]) - ≈⟨ Product.uniqueness prod ⟩ + ≈⟨ IsProduct.uniqueness prod ⟩ id1 A ab ∎