Mercurial > hg > Members > kono > Proof > category
diff CCCGraph.agda @ 945:94ece478b583
cobj and cmap connected
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 17 May 2020 23:07:18 +0900 |
parents | c58684b15d97 |
children | f8e6e9128f3d |
line wrap: on
line diff
--- a/CCCGraph.agda Sun May 17 18:42:17 2020 +0900 +++ b/CCCGraph.agda Sun May 17 23:07:18 2020 +0900 @@ -369,50 +369,50 @@ → {a b : vertex (g21 g) } → (m21 g & m12 g ) =m= id1 Grph (g21 g) -- Grph [ Grph [ m21 g o m12 g ] ≈ id1 Grph (g21 g) ] - fobj : Obj (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂}) → Obj Grph - fobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } - fmap : {a b : Obj (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂} ) } → Hom (Cart ) a b → Hom (Grph {c₁} {c₂}) (g21 ( fobj a )) (g21 ( fobj b )) - fmap {a} {b} f = record { - vmap = λ e → vmap (m21 (fobj b)) (FObj (cmap f) (vmap (m12 (fobj a)) e )) - ; emap = λ e → emap (m21 (fobj b)) (FMap (cmap f) (emap (m12 (fobj a)) e )) } + uobj : Obj (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂}) → Obj Grph + uobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } + umap : {a b : Obj (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂} ) } → Hom (Cart ) a b → Hom (Grph {c₁} {c₂}) (g21 ( uobj a )) (g21 ( uobj b )) + umap {a} {b} f = record { + vmap = λ e → vmap (m21 (uobj b)) (FObj (cmap f) (vmap (m12 (uobj a)) e )) + ; emap = λ e → emap (m21 (uobj b)) (FMap (cmap f) (emap (m12 (uobj a)) e )) } UX : Functor (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) (Grph {c₁} {c₂}) - FObj UX a = g21 (fobj a) - FMap UX f = fmap f + FObj UX a = g21 (uobj a) + FMap UX f = umap f isFunctor UX = isf where - isf : IsFunctor Cart Grph (λ z → g21 (fobj z)) fmap + isf : IsFunctor Cart Grph (λ z → g21 (uobj z)) umap IsFunctor.identity isf {a} {b} {f} = begin - fmap (id1 Cart a) + umap (id1 Cart a) ≈⟨⟩ - fmap {a} {a} (record { cmap = identityFunctor ; ccf = λ x → x }) + umap {a} {a} (record { cmap = identityFunctor ; ccf = λ x → x }) ≈⟨⟩ - record { vmap = λ e → vmap (m21 (fobj a)) (vmap (m12 (fobj a)) e ) ; emap = λ e → emap (m21 (fobj a)) (emap (m12 (fobj a)) e )} - ≈⟨ giso← {fobj a} {f} {f} ⟩ + record { vmap = λ e → vmap (m21 (uobj a)) (vmap (m12 (uobj a)) e ) ; emap = λ e → emap (m21 (uobj a)) (emap (m12 (uobj a)) e )} + ≈⟨ giso← {uobj a} {f} {f} ⟩ record { vmap = λ y → y ; emap = λ f → f } ≈⟨⟩ - id1 Grph (g21 (fobj a)) + id1 Grph (g21 (uobj a)) ∎ where open ≈-Reasoning Grph IsFunctor.distr isf {a} {b} {c} {f} {g} = begin - fmap ( Cart [ g o f ] ) + umap ( Cart [ g o f ] ) ≈⟨⟩ - ( m21 (fobj c) & ( record { vmap = λ e → FObj (cmap (( Cart [ g o f ] ))) e ; emap = λ e → FMap (cmap (( Cart [ g o f ] ))) e} & m12 (fobj a) ) ) + ( m21 (uobj c) & ( record { vmap = λ e → FObj (cmap (( Cart [ g o f ] ))) e ; emap = λ e → FMap (cmap (( Cart [ g o f ] ))) e} & m12 (uobj a) ) ) ≈⟨ {!!} ⟩ --- ( m21 (fobj c) & (record { vmap = λ e → FObj (cmap g) (FObj (cmap f) e) ; emap = λ e → FMap (cmap g) (FMap (cmap f) e) } --- & m12 (fobj a))) --- ≈⟨ cdr (cdr (car (giso← {fobj b} ))) ⟩ --- ( m21 (fobj c) & (record { vmap = λ e → FObj (cmap g) e ; emap = λ e → FMap (cmap g) e} --- & ((m12 (fobj b) --- & (m21 (fobj b))) & (record { vmap = λ e → FObj (cmap f) e ; emap = λ e → FMap (cmap f) e} --- & (m12 (fobj a) ))))) +-- ( m21 (uobj c) & (record { vmap = λ e → FObj (cmap g) (FObj (cmap f) e) ; emap = λ e → FMap (cmap g) (FMap (cmap f) e) } +-- & m12 (uobj a))) +-- ≈⟨ cdr (cdr (car (giso← {uobj b} ))) ⟩ +-- ( m21 (uobj c) & (record { vmap = λ e → FObj (cmap g) e ; emap = λ e → FMap (cmap g) e} +-- & ((m12 (uobj b) +-- & (m21 (uobj b))) & (record { vmap = λ e → FObj (cmap f) e ; emap = λ e → FMap (cmap f) e} +-- & (m12 (uobj a) ))))) -- ≈⟨⟩ - Grph [ fmap g o fmap f ] + Grph [ umap g o umap f ] ∎ where open ≈-Reasoning Grph IsFunctor.≈-cong isf {a} {b} {f} {g} f=g e = {!!} where -- lemma ( (extensionality Sets ( λ z → lemma4 ( -- ≃-cong (cat b) (f=g (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) -- )))) (f=g e) where - lemma4 : {x y : vertex (fobj b)} → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y + lemma4 : {x y : vertex (uobj b)} → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y lemma4 (refl eqv) = refl - -- lemma : vmap (fmap f) ≡ vmap (fmap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ g21 (fobj b)] emap (fmap f) {!!} == emap (fmap g) {!!} + -- lemma : vmap (umap f) ≡ vmap (umap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ g21 (uobj b)] emap (umap f) {!!} == emap (umap g) {!!} -- lemma = {!!} -- refl (refl eqv) = mrefl (≡←≈ b eqv) @@ -431,7 +431,7 @@ FCat : Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) FCat = record { cat = record { Obj = Obj PL - ; Hom = λ a b → fobj a → fobj b + ; Hom = λ a b → Hom B (FObj CS a) (FObj CS b) ; _o_ = Category._o_ B ; _≈_ = Category._≈_ B ; Id = λ {a} → id1 B (FObj CS a) @@ -478,16 +478,30 @@ η : (a : Obj (Grph {c₁} {c₂}) ) → Hom Grph a (FObj UX (F a)) η a = record { vmap = λ y → vm y ; emap = λ f → em f } where fo : Graph {suc c₁ } {c₁ ⊔ c₂} - fo = forgetful.fobj {c₁} {c₂} (F a) + fo = uobj {c₁} {c₂} (F a) vm : (y : vertex a ) → vertex (g21 fo) - vm y = vmap (m21 fo) {!!} -- (ccc-from-graph.fobj a (atom y)) + vm y = vmap (m21 fo) (atom y) em : { x y : vertex a } (f : edge a x y ) → edge (FObj UX (F a)) (vm x) (vm y) - em {x} {y} f = emap (m21 fo) (ccc-from-graph.fmap a (iv (arrow f) (id _))) + em {x} {y} f = emap (m21 fo) (fmap a (iv (arrow f) (id _))) pl : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Category _ _ _ pl g = PL g + cobj : {g : Obj (Grph {c₁} {c₂} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) + cobj {g} {c} f (atom x) = vmap (m12 (uobj {c₁} {c₂} c)) (vmap f x) + cobj {g} {c} f ⊤ = CCC.1 (ccc c) + cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) + cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) + c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} + → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) + c-map {g} {c} {atom a} {atom x} f y = {!!} + c-map {g} {c} {⊤} {atom x} f y = ? + c-map {g} {c} {a ∧ b} {atom x} f y = {!!} + c-map {g} {c} {b <= a} {atom x} f y = {!!} + c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) + c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f {!!}) (c-map f {!!}) + c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f {!!}) solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c solution {g} {c} f = record { cmap = record { - FObj = λ x → {!!} ; - FMap = λ {x} {y} h → {!!} ; + FObj = λ x → cobj {g} {c} f x ; + FMap = λ {x} {y} h → c-map {g} {c} {x} {y} f h ; isFunctor = {!!} } ; ccf = {!!} } where