Mercurial > hg > Members > kono > Proof > category
diff src/ToposEx.agda @ 971:9746e93a8c31
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 27 Feb 2021 12:15:28 +0900 |
parents | 396bf884f5e7 |
children | e05eb6029b5b |
line wrap: on
line diff
--- a/src/ToposEx.agda Fri Feb 26 12:19:58 2021 +0900 +++ b/src/ToposEx.agda Sat Feb 27 12:15:28 2021 +0900 @@ -82,5 +82,47 @@ -- } -- } +module _ {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) (t : Topos A (CCC.1 c) (CCC.○ c) ) where + open ≈-Reasoning A + open CCC.CCC c + δmono : {b : Obj A } → Mono A < id1 A b , id1 A b > + δmono = record { + isMono = m1 + } where + m1 : {d b : Obj A} (f g : Hom A d b) → A [ A [ < id1 A b , id1 A b > o f ] ≈ A [ < id1 A b , id1 A b > o g ] ] → A [ f ≈ g ] + m1 {d} {b} f g = {!!} + prop32→ : {a b : Obj A}→ (f g : Hom A a b ) + → A [ f ≈ g ] → A [ A [ char t < id1 A b , id1 A b > δmono o < f , g > ] ≈ A [ ⊤ t o ○ a ] ] + prop32→ = {!!} + + prop23→ : {a b : Obj A}→ (f g : Hom A a b ) + → A [ A [ char t < id1 A b , id1 A b > δmono o < f , g > ] ≈ A [ ⊤ t o ○ a ] ] → A [ f ≈ g ] + prop23→ = {!!} + + N : (n : ToposNat A 1 ) → Obj A + N n = NatD.Nat (ToposNat.TNat n) + + record prop33 (n : ToposNat A 1 ) {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where + field + g : Hom A (N n) a + g0=f : A [ A [ g o NatD.nzero (ToposNat.TNat n) ] ≈ f ] + gs=h : A [ A [ g o NatD.nsuc (ToposNat.TNat n) ] ≈ A [ h o < id1 A _ , g > ] ] + + cor33 : (n : ToposNat A 1 ) + → ( {a : Obj A} (f : Hom A 1 a ) ( h : Hom A (N n ∧ a) a ) → prop33 n f h ) + → coProduct A 1 ( NatD.Nat (ToposNat.TNat n) ) -- N ≅ N + 1 + cor33 n p = record { + coproduct = N n + ; κ1 = NatD.nzero (ToposNat.TNat n) + ; κ2 = id1 A (N n) + ; isProduct = record { + _+_ = λ {a} f g → prop33.g ( p {a} f π' ) + ; κ1fxg=f = λ {a} {f} {g} → prop33.g0=f (p f π' ) + ; κ2fxg=g = λ {a} {f} {g} → ? + ; uniqueness = {!!} + ; +-cong = {!!} + + } + }