Mercurial > hg > Members > kono > Proof > category
diff comparison-em.agda @ 688:a5f2ca67e7c5
fix monad/adjunction definition
couniversal to limit does not work
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 11 Nov 2017 21:34:58 +0900 |
parents | d3cd28a71b3f |
children |
line wrap: on
line diff
--- a/comparison-em.agda Wed Nov 08 19:57:43 2017 +0900 +++ b/comparison-em.agda Sat Nov 11 21:34:58 2017 +0900 @@ -19,14 +19,13 @@ { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } - { M' : Monad A T η μ } + { M' : IsMonad A T η μ } {c₁' c₂' ℓ' : Level} ( B : Category c₁' c₂' ℓ' ) { U^K : Functor B A } { F^K : Functor A B } { η^K : NTrans A A identityFunctor ( U^K ○ F^K ) } { ε^K : NTrans B B ( F^K ○ U^K ) identityFunctor } { μ^K : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) } - ( Adj^K : Adjunction A B U^K F^K η^K ε^K ) - ( RK : MResolution A B T U^K F^K {η^K} {ε^K} {μ^K} Adj^K ) + ( Adj^K : IsAdjunction A B U^K F^K η^K ε^K ) where open import adj-monad @@ -36,8 +35,8 @@ μ^K' : NTrans A A (( U^K ○ F^K ) ○ ( U^K ○ F^K )) ( U^K ○ F^K ) μ^K' = UεF A B U^K F^K ε^K -M : Monad A (U^K ○ F^K ) η^K μ^K' -M = Adj2Monad A B {U^K} {F^K} {η^K} {ε^K} Adj^K +M : IsMonad A (U^K ○ F^K ) η^K μ^K' +M = Monad.isMonad ( Adj2Monad A B ( record { U = U^K; F = F^K ; η = η^K ; ε = ε^K ; isAdjunction = Adj^K } ) ) open import em-category {c₁} {c₂} {ℓ} {A} { U^K ○ F^K } { η^K } { μ^K' } { M } @@ -55,7 +54,7 @@ identity1 b = let open ≈-Reasoning (A) in begin (FMap U^K (TMap ε^K b)) o TMap η^K (FObj U^K b) - ≈⟨ IsAdjunction.adjoint1 (isAdjunction Adj^K) ⟩ + ≈⟨ IsAdjunction.adjoint1 Adj^K ⟩ id1 A (FObj U^K b) ∎