diff src/freyd2.agda @ 949:ac53803b3b2a

reorganization for apkg
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 21 Dec 2020 16:40:15 +0900
parents freyd2.agda@340708e8d54f
children 40c39d3e6a75
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/freyd2.agda	Mon Dec 21 16:40:15 2020 +0900
@@ -0,0 +1,439 @@
+open import Category -- https://github.com/konn/category-agda                                                                                     
+open import Level
+open import Category.Sets renaming ( _o_ to _*_ )
+
+module freyd2 
+   where
+
+open import HomReasoning
+open import cat-utility
+open import Relation.Binary.Core
+open import Function
+
+----------
+--
+-- A is locally small complete and K{*}↓U has preinitial full subcategory, U is an adjoint functor
+--
+--    a : Obj A
+--    U : A → Sets
+--    U ⋍ Hom (a,-)
+--
+
+open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym )
+
+-- A is localy small
+postulate ≡←≈ :  { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {a b : Obj A } { x y : Hom A a b } →  (x≈y : A [ x ≈ y  ]) → x ≡ y
+
+import Axiom.Extensionality.Propositional
+-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
+postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂
+
+----
+--
+--  Hom ( a, - ) is Object mapping in Yoneda Functor
+--
+----
+
+open NTrans 
+open Functor
+open Limit
+open IsLimit
+open import Category.Cat
+
+Yoneda : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂})
+Yoneda  {c₁} {c₂} {ℓ} A a = record {
+    FObj = λ b → Hom A a b
+  ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ]    --   f : Hom A x y  → Hom Sets (Hom A a x ) (Hom A a y)
+  ; isFunctor = record {
+             identity =  λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ;
+             distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ;
+             ≈-cong = λ eq → extensionality A ( λ x →  lemma-y-obj3 x eq ) 
+        } 
+    }  where
+        lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) →  A [ id1 A b o x ] ≡ x
+        lemma-y-obj1 {b} x = let open ≈-Reasoning A  in ≡←≈ A idL
+        lemma-y-obj2 :  (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ 
+               A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x
+        lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≡←≈ A ( begin
+               A [ A [ g o f ] o x ]
+             ≈↑⟨ assoc ⟩
+               A [ g o A [ f o x ] ]
+             ≈⟨⟩
+               ( λ x →  A [ g o x  ]  ) ( ( λ x → A [ f o x ] ) x )
+             ∎ )
+        lemma-y-obj3 :  {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] →   A [ f o x ] ≡ A [ g o x ]
+        lemma-y-obj3 {_} {_} {f} {g} x eq =  let open ≈-Reasoning A in ≡←≈ A ( begin
+                A [ f o x ]
+             ≈⟨ resp refl-hom eq ⟩
+                A [ g o x ]
+             ∎ )
+
+-- Representable  U  ≈ Hom(A,-)
+
+record Representable  { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (a : Obj A) : Set  (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ ))  where
+   field
+         -- FObj U x  :  A  → Set
+         -- FMap U f  =  Set → Set (locally small)
+         -- λ b → Hom (a,b) :  A → Set
+         -- λ f → Hom (a,-) = λ b → Hom  a b    
+
+         repr→ : NTrans A (Sets {c₂}) U (Yoneda A a )
+         repr← : NTrans A (Sets {c₂}) (Yoneda A a)  U
+         reprId→  :  {x : Obj A} →  Sets [ Sets [ TMap repr→ x  o  TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (Yoneda A a) x )]
+         reprId←  :  {x : Obj A} →  Sets [ Sets [ TMap repr← x  o  TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)]
+
+open Representable
+
+_↓_ :  { c₁ c₂ ℓ : Level}  { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' }
+    →  ( F G : Functor A B )
+    →  Category  (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ
+_↓_   { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'}  { A } { B } F G  = CommaCategory
+         where open import Comma1 F G
+
+open Complete
+open HasInitialObject
+open import Comma1
+open CommaObj
+open LimitPreserve
+
+-- Representable Functor U preserve limit , so K{*}↓U is complete
+--
+--    Yoneda A b =  λ a → Hom A a b    : Functor A Sets
+--                                     : Functor Sets A
+
+YonedaFpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ)
+      (b : Obj A ) 
+      (Γ : Functor I A) (limita : Limit I A Γ) →
+        IsLimit I Sets (Yoneda A b ○ Γ) (FObj (Yoneda A b) (a0 limita)) (LimitNat I A Sets Γ (a0 limita) (t0 limita) (Yoneda A b))
+YonedaFpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record {
+         limit = λ a t → ψ a t
+       ; t0f=t = λ {a t i} → t0f=t0 a t i
+       ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t 
+    } where 
+      hat0 :  NTrans I Sets (K I Sets (FObj (Yoneda A b) (a0 lim))) (Yoneda A b ○ Γ)
+      hat0 = LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)
+      haa0 : Obj Sets
+      haa0 = FObj (Yoneda A b) (a0 lim)
+      ta : (a : Obj Sets) ( x : a ) ( t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)) → NTrans I A (K I A b ) Γ
+      ta a x t = record { TMap = λ i → (TMap t i ) x ; isNTrans = record { commute = commute1 } } where
+         commute1 :  {a₁ b₁ : Obj I} {f : Hom I a₁ b₁} →
+                A [ A [ FMap Γ f o TMap t a₁ x ] ≈ A [ TMap t b₁ x o FMap (K I A b) f ]  ]
+         commute1  {a₁} {b₁} {f} = let open ≈-Reasoning A in begin
+                 FMap Γ f o TMap t a₁ x
+             ≈⟨⟩
+                 ( ( FMap (Yoneda A b  ○ Γ ) f )  *  TMap t a₁ ) x
+             ≈⟨ ≈←≡ ( cong (λ k → k x ) (IsNTrans.commute (isNTrans t)) ) ⟩
+                 ( TMap t b₁ * ( FMap (K I Sets a) f ) ) x
+             ≈⟨⟩
+                 ( TMap t b₁ * id1 Sets a ) x
+             ≈⟨⟩
+                 TMap t b₁ x 
+             ≈↑⟨ idR ⟩
+                 TMap t b₁ x o id1 A b
+             ≈⟨⟩
+                 TMap t b₁ x o FMap (K I A b) f 
+             ∎ 
+      ψ  :  (X : Obj Sets)  ( t : NTrans I Sets (K I Sets X) (Yoneda A b ○ Γ))
+          →  Hom Sets X (FObj (Yoneda A b) (a0 lim))
+      ψ X t x = FMap (Yoneda A b) (limit (isLimit lim) b (ta X x t )) (id1 A b )
+      t0f=t0 : (a : Obj Sets ) ( t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)) (i : Obj I)
+           → Sets [ Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o ψ a t ] ≈ TMap t i ]
+      t0f=t0 a t i = let open ≈-Reasoning A in extensionality A ( λ x →  ≡←≈ A ( begin 
+                 ( Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o ψ a t  ] ) x
+             ≈⟨⟩
+                FMap (Yoneda A b) ( TMap (t0 lim) i) (FMap (Yoneda A b) (limit (isLimit lim) b (ta a x t )) (id1 A b ))
+             ≈⟨⟩ -- FMap (Hom A b ) f g  = A [ f o g  ]
+                TMap (t0 lim) i o (limit (isLimit lim) b (ta a x t ) o id1 A b )
+             ≈⟨  cdr idR ⟩
+                TMap (t0 lim) i o limit (isLimit lim) b (ta a x t ) 
+             ≈⟨  t0f=t (isLimit lim) ⟩
+                TMap (ta a x t) i
+             ≈⟨⟩
+                 TMap t i x
+             ∎  ))
+      limit-uniqueness0 :  {a : Obj Sets} {t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)} {f : Hom Sets a (FObj (Yoneda A b) (a0 lim))} →
+        ({i : Obj I} → Sets [ Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o f ] ≈ TMap t i ]) →
+        Sets [ ψ a t ≈ f ]
+      limit-uniqueness0 {a} {t} {f} t0f=t = let open ≈-Reasoning A in extensionality A ( λ x →  ≡←≈ A ( begin 
+                  ψ a t x
+             ≈⟨⟩
+                 FMap (Yoneda A b) (limit (isLimit lim) b (ta a x t )) (id1 A b )
+             ≈⟨⟩
+                 limit (isLimit lim) b (ta a x t ) o id1 A b 
+             ≈⟨ idR ⟩
+                 limit (isLimit lim) b (ta a x t ) 
+             ≈⟨ limit-uniqueness (isLimit lim) ( λ {i} → ≈←≡ ( cong ( λ g → g x )( t0f=t {i} ))) ⟩
+                  f x
+             ∎  ))
+
+
+YonedaFpreserveLimit : {c₁ c₂ ℓ : Level} (I : Category c₁ c₂ ℓ) (A : Category c₁ c₂ ℓ)
+       (b : Obj A ) → LimitPreserve I A Sets (Yoneda A b) 
+YonedaFpreserveLimit I A b = record {
+       preserve = λ Γ lim → YonedaFpreserveLimit0 A I b Γ lim
+   } 
+
+
+-- K{*}↓U has preinitial full subcategory if U is representable
+--     if U is representable,  K{*}↓U has initial Object ( so it has preinitial full subcategory )
+
+open CommaHom
+
+data * {c : Level} : Set c where
+  OneObj : *
+
+KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
+      (a : Obj A )
+      → HasInitialObject  ( K A Sets * ↓ (Yoneda A a) ) ( record  { obj = a ; hom = λ x → id1 A a } )
+KUhasInitialObj {c₁} {c₂} {ℓ} A a = record {
+           initial =  λ b → initial0 b
+         ; uniqueness =  λ f → unique f
+     } where
+         commaCat : Category  (c₂ ⊔ c₁) c₂ ℓ
+         commaCat = K A Sets * ↓ Yoneda A a
+         initObj  : Obj (K A Sets * ↓ Yoneda A a)
+         initObj = record { obj = a ; hom = λ x → id1 A a }
+         comm2 : (b : Obj commaCat) ( x : * ) → ( Sets [ FMap (Yoneda A a) (hom b OneObj) o (λ x₁ → id1 A a) ] )  x ≡ hom b x
+         comm2 b OneObj = let open ≈-Reasoning A in  ≡←≈ A ( begin
+                ( Sets [ FMap (Yoneda A a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) OneObj
+             ≈⟨⟩
+                FMap (Yoneda A a) (hom b OneObj) (id1 A a)
+             ≈⟨⟩
+                hom b OneObj o id1 A a
+             ≈⟨ idR ⟩
+                hom b OneObj 
+             ∎  )
+         comm1 : (b : Obj commaCat) → Sets [ Sets [ FMap (Yoneda A a) (hom b OneObj) o hom initObj ] ≈ Sets [ hom b o FMap (K A Sets *) (hom b OneObj) ] ]
+         comm1 b = let open ≈-Reasoning Sets in begin
+                FMap (Yoneda A a) (hom b OneObj) o ( λ x → id1 A a )
+             ≈⟨ extensionality A ( λ x → comm2 b x ) ⟩
+                hom b 
+             ≈⟨⟩
+                hom b o FMap (K A Sets *) (hom b OneObj) 
+             ∎ 
+         initial0 : (b : Obj commaCat) →
+            Hom commaCat initObj b
+         initial0 b = record {
+                arrow = hom b OneObj
+              ; comm = comm1 b }
+         -- what is comm f ?
+         comm-f :  (b : Obj (K A Sets * ↓ (Yoneda A a))) (f : Hom (K A Sets * ↓ Yoneda A a) initObj b)
+            → Sets [ Sets [ FMap  (Yoneda A a) (arrow f) o ( λ x → id1 A a ) ]
+               ≈ Sets [ hom b  o  FMap  (K A Sets *) (arrow f) ]  ] 
+         comm-f b f = comm f
+         unique : {b : Obj (K A Sets * ↓ Yoneda A a)}  (f : Hom (K A Sets * ↓ Yoneda A a) initObj b)
+                → (K A Sets * ↓ Yoneda A a) [ f ≈ initial0 b ]
+         unique {b} f = let open ≈-Reasoning A in begin
+                arrow f
+             ≈↑⟨ idR ⟩
+                arrow f o id1 A a
+             ≈⟨⟩
+                ( Sets [ FMap  (Yoneda A a) (arrow f) o id1 Sets (FObj (Yoneda A a) a)  ] ) (id1 A a)
+             ≈⟨⟩
+               ( Sets [ FMap  (Yoneda A a) (arrow f) o ( λ x → id1 A a ) ] ) OneObj
+             ≈⟨ ≈←≡ ( cong (λ k → k OneObj ) (comm f )) ⟩
+               ( Sets [ hom b  o  FMap  (K A Sets *) (arrow f) ]  ) OneObj
+             ≈⟨⟩
+                hom b OneObj
+             ∎ 
+
+            
+
+-- A is complete and K{*}↓U has preinitial full subcategory and U preserve limit then U is representable
+
+-- if U preserve limit,  K{*}↓U has initial object from freyd.agda
+
+≡-cong = Relation.Binary.PropositionalEquality.cong
+
+
+ub : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b )
+   → Hom Sets (FObj (K A Sets *) b) (FObj U b)
+ub A U b x OneObj = x
+ob : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b )
+   → Obj ( K A Sets * ↓ U)
+ob A U b x = record { obj = b ; hom = ub A U b x}
+fArrow : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )  {a b : Obj A} (f : Hom A a b) (x : FObj U a )
+   → Hom ( K A Sets * ↓ U) ( ob A U a x ) (ob A U b (FMap U f x) )
+fArrow A U {a} {b} f x = record { arrow = f ; comm = fArrowComm a b f x }
+  where
+        fArrowComm1 : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → (y : * ) → FMap U f ( ub A U a x y ) ≡ ub A U b (FMap U f x) y
+        fArrowComm1 a b f x OneObj = refl
+        fArrowComm : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → 
+         Sets [ Sets [ FMap U f o hom (ob A U a x) ] ≈ Sets [ hom (ob A U b (FMap U f x)) o FMap (K A Sets *) f ] ]
+        fArrowComm a b f x = extensionality Sets ( λ y → begin 
+                ( Sets [ FMap U f o hom (ob A U a x) ] ) y 
+             ≡⟨⟩
+                FMap U f ( hom (ob A U a x) y )
+             ≡⟨⟩
+                FMap U f ( ub A U a x y )
+             ≡⟨ fArrowComm1 a b f x y ⟩
+                ub A U b (FMap U f x) y
+             ≡⟨⟩
+                hom (ob A U b (FMap U f x)) y
+             ∎ ) where
+                  open  import  Relation.Binary.PropositionalEquality
+                  open ≡-Reasoning
+
+
+-- if K{*}↓U has initial Obj, U is representable
+
+UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) 
+     (U : Functor A (Sets {c₂}) )
+     ( i : Obj ( K A Sets * ↓ U) )
+     (In : HasInitialObject ( K A Sets * ↓ U) i ) 
+       → Representable A U (obj i)
+UisRepresentable A U i In = record {
+        repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } }
+        ; repr← = record { TMap = tmap2 ; isNTrans = record { commute = comm2 } }
+        ; reprId→  = iso→ 
+        ; reprId←  = iso←
+   } where
+      comm11 : (a b : Obj A) (f : Hom A a b) (y : FObj U a ) →
+         ( Sets [ FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In (ob A U a x))) ] ) y   
+           ≡ (Sets [ ( λ x → arrow (initial In (ob A U b x))) o FMap U f ] ) y
+      comm11 a b f y = begin
+               ( Sets [ FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In (ob A U a x))) ] ) y   
+             ≡⟨⟩
+                 A [ f o arrow (initial In (ob A U a y)) ]
+             ≡⟨⟩
+                 A [ arrow ( fArrow A U f y ) o arrow (initial In (ob A U a y)) ]
+             ≡⟨  ≡←≈ A ( uniqueness In {ob A U b (FMap U f y) } (( K A Sets * ↓ U) [ fArrow A U f y  o initial In (ob A U a y)] ) ) ⟩
+                arrow (initial In (ob A U b (FMap U f y) ))
+             ≡⟨⟩
+                (Sets [ ( λ x → arrow (initial In (ob A U b x))) o FMap U f ] ) y
+             ∎  where
+                  open  import  Relation.Binary.PropositionalEquality
+                  open ≡-Reasoning
+      tmap1 :  (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (obj i)) b)
+      tmap1 b x = arrow ( initial In (ob A U b x ) ) 
+      comm1 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap (Yoneda A (obj i)) f o tmap1 a ] ≈ Sets [ tmap1 b o FMap U f ] ]
+      comm1 {a} {b} {f} = let open ≈-Reasoning Sets in begin
+                FMap (Yoneda A (obj i)) f o tmap1 a 
+             ≈⟨⟩
+                FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In ( ob A U a x )))  
+             ≈⟨ extensionality Sets ( λ y → comm11 a b f y ) ⟩
+                ( λ x → arrow (initial In (ob A U b x))) o FMap U f 
+             ≈⟨⟩
+                tmap1 b o FMap U f 
+             ∎ 
+      comm21 : (a b : Obj A) (f : Hom A a b) ( y : Hom A (obj i) a ) → 
+          (Sets [ FMap U f o (λ x → FMap U x (hom i OneObj))] ) y ≡
+                (Sets [ ( λ x → (FMap U x ) (hom i OneObj)) o (λ x → A [ f o x ] ) ] )  y
+      comm21 a b f y = begin
+                FMap U f ( FMap U y (hom i OneObj))
+             ≡⟨ ≡-cong ( λ k → k (hom i OneObj)) ( sym ( IsFunctor.distr (isFunctor U ) ) ) ⟩
+                (FMap U (A [ f o y ] ) ) (hom i OneObj) 
+             ∎  where
+                  open  import  Relation.Binary.PropositionalEquality
+                  open ≡-Reasoning
+      tmap2 :  (b : Obj A) → Hom Sets (FObj (Yoneda A (obj i)) b) (FObj U b)
+      tmap2 b x =  ( FMap U x ) ( hom i OneObj )
+      comm2 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap U f o tmap2 a ] ≈
+        Sets [ tmap2 b o FMap (Yoneda A (obj i)) f ] ]
+      comm2 {a} {b} {f} = let open ≈-Reasoning Sets in begin
+                FMap U f o tmap2 a 
+             ≈⟨⟩
+                FMap U f o ( λ x → ( FMap U x ) ( hom i OneObj ) )
+             ≈⟨ extensionality Sets ( λ y → comm21 a b f y ) ⟩
+                ( λ x → ( FMap U x ) ( hom i OneObj ) ) o ( λ x → A [ f o x  ]  )
+             ≈⟨⟩
+                ( λ x → ( FMap U x ) ( hom i OneObj ) ) o FMap (Yoneda A (obj i)) f 
+             ≈⟨⟩
+                tmap2 b o FMap (Yoneda A (obj i)) f 
+             ∎
+      iso0 : ( x : Obj A) ( y : Hom A (obj i ) x ) ( z : * )
+         → ( Sets [ FMap U y o hom i ] ) z ≡ ( Sets [ ub A U x (FMap U y (hom i OneObj)) o FMap (K A Sets *) y ] ) z 
+      iso0 x y  OneObj = refl
+      iso→  : {x : Obj A} → Sets [ Sets [ tmap1 x o tmap2 x ] ≈ id1 Sets (FObj (Yoneda A (obj i)) x) ]
+      iso→ {x} = let open ≈-Reasoning A in extensionality Sets ( λ ( y : Hom A (obj i ) x ) → ≡←≈ A ( begin
+               ( Sets [ tmap1 x o tmap2 x ] ) y
+             ≈⟨⟩
+                arrow ( initial In (ob A U x (( FMap U y ) ( hom i OneObj ) ))) 
+             ≈↑⟨  uniqueness In (record { arrow = y ; comm = extensionality Sets ( λ (z : * ) → iso0 x y z ) }  ) ⟩
+               y
+             ∎  ))
+      iso←  : {x : Obj A} → Sets [ Sets [ tmap2 x o tmap1 x ] ≈ id1 Sets (FObj U x) ]
+      iso← {x} = extensionality Sets ( λ (y : FObj U x ) → ( begin 
+               ( Sets [ tmap2 x o tmap1 x ] ) y
+             ≡⟨⟩
+               ( FMap U ( arrow ( initial In (ob A U x y ) ))  ) ( hom i OneObj )
+             ≡⟨ ≡-cong (λ k → k OneObj) ( comm ( initial In (ob A U x y ) )) ⟩
+                 hom (ob A U x y) OneObj
+             ≡⟨⟩
+               y
+             ∎  ) ) where
+                  open  import  Relation.Binary.PropositionalEquality
+                  open ≡-Reasoning
+
+-------------
+-- Adjoint Functor Theorem
+--
+
+module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I )
+     (U : Functor A B )
+     (i :  (b : Obj B) → Obj ( K A B b ↓ U) )
+     (In :  (b : Obj B) → HasInitialObject ( K A B b ↓ U) (i b) ) 
+        where
+
+   tmap-η : (y : Obj B)  → Hom B y (FObj U (obj (i y)))
+   tmap-η  y = hom (i y) 
+
+   sobj  : {a : Obj B} {b : Obj A}  → ( f : Hom B a (FObj U b) ) → CommaObj (K A B a) U 
+   sobj {a} {b} f = record {obj = b; hom =  f } 
+   solution : {a : Obj B} {b : Obj A}  → ( f : Hom B a (FObj U b) ) → CommaHom (K A B a) U (i a) (sobj f)
+   solution {a} {b} f = initial (In a) (sobj f)
+
+   ηf : (a b  : Obj B)  → ( f : Hom B a b ) → Obj ( K A B a ↓ U)
+   ηf a b f  = sobj ( B [ tmap-η b o f ]  )
+
+   univ : {a : Obj B} {b : Obj A}  → (f : Hom B a (FObj U b))
+       → B [ B [ FMap U (arrow (solution f)) o tmap-η a ]  ≈ f ]
+   univ {a} {b} f = let open ≈-Reasoning B in begin
+        FMap U (arrow (solution f)) o tmap-η a 
+      ≈⟨ comm (initial (In a) (sobj f))  ⟩
+        hom (sobj f) o FMap (K A B a) (arrow (initial (In a) (sobj f)))
+      ≈⟨ idR ⟩
+        f 
+      ∎  
+
+   unique : {a : Obj B} { b : Obj A } → { f : Hom B a (FObj U b) } → { g :  Hom A (obj (i a)) b} →
+      B [ B [ FMap U g o  tmap-η a ]  ≈ f ] → A [ arrow (solution f)  ≈ g ]
+   unique {a} {b} {f} {g} ugη=f = let open ≈-Reasoning A in begin
+        arrow (solution f) 
+      ≈↑⟨ ≈←≡ ( cong (λ k → arrow (solution k)) ( ≡←≈ B ugη=f )) ⟩
+        arrow (solution (B [ FMap U g o tmap-η a ] )) 
+      ≈↑⟨ uniqueness (In a) (record { arrow = g ; comm = comm1 }) ⟩
+        g 
+      ∎  where
+         comm1 : B [ B [ FMap U g o hom (i a) ] ≈ B [ B [ FMap U g o tmap-η a ] o FMap (K A B a) g ] ]
+         comm1 = let open ≈-Reasoning B in sym idR
+
+   UM : UniversalMapping B A U 
+   UM = record {
+         F = λ b → obj (i b) ;
+         η = tmap-η ;
+         _* = λ f → arrow (solution f)  ;
+         isUniversalMapping = record {
+            universalMapping  = λ {a} {b} {f} → univ f ;
+            uniquness = unique
+      }}
+
+   -- Adjoint can be built as follows (same as univeral-mapping.agda )
+   --
+   -- F : Functor B A
+   -- F = record {
+   --  FObj = λ b →  obj (i b) 
+   --  ; FMap = λ {x} {y} (f : Hom B x y ) → arrow (solution ( B [ tmap-η y o f ]  ))
+
+   -- nat-ε : NTrans A A (F ○ U) identityFunctor
+   -- nat-ε  = record {
+   --       TMap = λ x → arrow ( solution (id1 B (FObj U x)))
+
+   -- nat-η : NTrans B B identityFunctor (U ○ F)
+   -- nat-η = record { TMap = λ y →  tmap-η y ; isNTrans = record { commute = comm1 } } where
+
+   -- FisLeftAdjoint  : Adjunction B A U F nat-η nat-ε 
+   -- FisLeftAdjoint  = record { isAdjunction = record {
+
+-- end
+