Mercurial > hg > Members > kono > Proof > category
diff src/freyd2.agda @ 949:ac53803b3b2a
reorganization for apkg
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 21 Dec 2020 16:40:15 +0900 |
parents | freyd2.agda@340708e8d54f |
children | 40c39d3e6a75 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/freyd2.agda Mon Dec 21 16:40:15 2020 +0900 @@ -0,0 +1,439 @@ +open import Category -- https://github.com/konn/category-agda +open import Level +open import Category.Sets renaming ( _o_ to _*_ ) + +module freyd2 + where + +open import HomReasoning +open import cat-utility +open import Relation.Binary.Core +open import Function + +---------- +-- +-- A is locally small complete and K{*}↓U has preinitial full subcategory, U is an adjoint functor +-- +-- a : Obj A +-- U : A → Sets +-- U ⋍ Hom (a,-) +-- + +open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym ) + +-- A is localy small +postulate ≡←≈ : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y + +import Axiom.Extensionality.Propositional +-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) +postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ + +---- +-- +-- Hom ( a, - ) is Object mapping in Yoneda Functor +-- +---- + +open NTrans +open Functor +open Limit +open IsLimit +open import Category.Cat + +Yoneda : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) +Yoneda {c₁} {c₂} {ℓ} A a = record { + FObj = λ b → Hom A a b + ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y) + ; isFunctor = record { + identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ; + distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ; + ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) + } + } where + lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x + lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≡←≈ A idL + lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ + A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x + lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≡←≈ A ( begin + A [ A [ g o f ] o x ] + ≈↑⟨ assoc ⟩ + A [ g o A [ f o x ] ] + ≈⟨⟩ + ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) + ∎ ) + lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ] + lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≡←≈ A ( begin + A [ f o x ] + ≈⟨ resp refl-hom eq ⟩ + A [ g o x ] + ∎ ) + +-- Representable U ≈ Hom(A,-) + +record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (a : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where + field + -- FObj U x : A → Set + -- FMap U f = Set → Set (locally small) + -- λ b → Hom (a,b) : A → Set + -- λ f → Hom (a,-) = λ b → Hom a b + + repr→ : NTrans A (Sets {c₂}) U (Yoneda A a ) + repr← : NTrans A (Sets {c₂}) (Yoneda A a) U + reprId→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (Yoneda A a) x )] + reprId← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] + +open Representable + +_↓_ : { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' } + → ( F G : Functor A B ) + → Category (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ +_↓_ { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} { A } { B } F G = CommaCategory + where open import Comma1 F G + +open Complete +open HasInitialObject +open import Comma1 +open CommaObj +open LimitPreserve + +-- Representable Functor U preserve limit , so K{*}↓U is complete +-- +-- Yoneda A b = λ a → Hom A a b : Functor A Sets +-- : Functor Sets A + +YonedaFpreserveLimit0 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) + (b : Obj A ) + (Γ : Functor I A) (limita : Limit I A Γ) → + IsLimit I Sets (Yoneda A b ○ Γ) (FObj (Yoneda A b) (a0 limita)) (LimitNat I A Sets Γ (a0 limita) (t0 limita) (Yoneda A b)) +YonedaFpreserveLimit0 {c₁} {c₂} {ℓ} A I b Γ lim = record { + limit = λ a t → ψ a t + ; t0f=t = λ {a t i} → t0f=t0 a t i + ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t + } where + hat0 : NTrans I Sets (K I Sets (FObj (Yoneda A b) (a0 lim))) (Yoneda A b ○ Γ) + hat0 = LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b) + haa0 : Obj Sets + haa0 = FObj (Yoneda A b) (a0 lim) + ta : (a : Obj Sets) ( x : a ) ( t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)) → NTrans I A (K I A b ) Γ + ta a x t = record { TMap = λ i → (TMap t i ) x ; isNTrans = record { commute = commute1 } } where + commute1 : {a₁ b₁ : Obj I} {f : Hom I a₁ b₁} → + A [ A [ FMap Γ f o TMap t a₁ x ] ≈ A [ TMap t b₁ x o FMap (K I A b) f ] ] + commute1 {a₁} {b₁} {f} = let open ≈-Reasoning A in begin + FMap Γ f o TMap t a₁ x + ≈⟨⟩ + ( ( FMap (Yoneda A b ○ Γ ) f ) * TMap t a₁ ) x + ≈⟨ ≈←≡ ( cong (λ k → k x ) (IsNTrans.commute (isNTrans t)) ) ⟩ + ( TMap t b₁ * ( FMap (K I Sets a) f ) ) x + ≈⟨⟩ + ( TMap t b₁ * id1 Sets a ) x + ≈⟨⟩ + TMap t b₁ x + ≈↑⟨ idR ⟩ + TMap t b₁ x o id1 A b + ≈⟨⟩ + TMap t b₁ x o FMap (K I A b) f + ∎ + ψ : (X : Obj Sets) ( t : NTrans I Sets (K I Sets X) (Yoneda A b ○ Γ)) + → Hom Sets X (FObj (Yoneda A b) (a0 lim)) + ψ X t x = FMap (Yoneda A b) (limit (isLimit lim) b (ta X x t )) (id1 A b ) + t0f=t0 : (a : Obj Sets ) ( t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)) (i : Obj I) + → Sets [ Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o ψ a t ] ≈ TMap t i ] + t0f=t0 a t i = let open ≈-Reasoning A in extensionality A ( λ x → ≡←≈ A ( begin + ( Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o ψ a t ] ) x + ≈⟨⟩ + FMap (Yoneda A b) ( TMap (t0 lim) i) (FMap (Yoneda A b) (limit (isLimit lim) b (ta a x t )) (id1 A b )) + ≈⟨⟩ -- FMap (Hom A b ) f g = A [ f o g ] + TMap (t0 lim) i o (limit (isLimit lim) b (ta a x t ) o id1 A b ) + ≈⟨ cdr idR ⟩ + TMap (t0 lim) i o limit (isLimit lim) b (ta a x t ) + ≈⟨ t0f=t (isLimit lim) ⟩ + TMap (ta a x t) i + ≈⟨⟩ + TMap t i x + ∎ )) + limit-uniqueness0 : {a : Obj Sets} {t : NTrans I Sets (K I Sets a) (Yoneda A b ○ Γ)} {f : Hom Sets a (FObj (Yoneda A b) (a0 lim))} → + ({i : Obj I} → Sets [ Sets [ TMap (LimitNat I A Sets Γ (a0 lim) (t0 lim) (Yoneda A b)) i o f ] ≈ TMap t i ]) → + Sets [ ψ a t ≈ f ] + limit-uniqueness0 {a} {t} {f} t0f=t = let open ≈-Reasoning A in extensionality A ( λ x → ≡←≈ A ( begin + ψ a t x + ≈⟨⟩ + FMap (Yoneda A b) (limit (isLimit lim) b (ta a x t )) (id1 A b ) + ≈⟨⟩ + limit (isLimit lim) b (ta a x t ) o id1 A b + ≈⟨ idR ⟩ + limit (isLimit lim) b (ta a x t ) + ≈⟨ limit-uniqueness (isLimit lim) ( λ {i} → ≈←≡ ( cong ( λ g → g x )( t0f=t {i} ))) ⟩ + f x + ∎ )) + + +YonedaFpreserveLimit : {c₁ c₂ ℓ : Level} (I : Category c₁ c₂ ℓ) (A : Category c₁ c₂ ℓ) + (b : Obj A ) → LimitPreserve I A Sets (Yoneda A b) +YonedaFpreserveLimit I A b = record { + preserve = λ Γ lim → YonedaFpreserveLimit0 A I b Γ lim + } + + +-- K{*}↓U has preinitial full subcategory if U is representable +-- if U is representable, K{*}↓U has initial Object ( so it has preinitial full subcategory ) + +open CommaHom + +data * {c : Level} : Set c where + OneObj : * + +KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + (a : Obj A ) + → HasInitialObject ( K A Sets * ↓ (Yoneda A a) ) ( record { obj = a ; hom = λ x → id1 A a } ) +KUhasInitialObj {c₁} {c₂} {ℓ} A a = record { + initial = λ b → initial0 b + ; uniqueness = λ f → unique f + } where + commaCat : Category (c₂ ⊔ c₁) c₂ ℓ + commaCat = K A Sets * ↓ Yoneda A a + initObj : Obj (K A Sets * ↓ Yoneda A a) + initObj = record { obj = a ; hom = λ x → id1 A a } + comm2 : (b : Obj commaCat) ( x : * ) → ( Sets [ FMap (Yoneda A a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) x ≡ hom b x + comm2 b OneObj = let open ≈-Reasoning A in ≡←≈ A ( begin + ( Sets [ FMap (Yoneda A a) (hom b OneObj) o (λ x₁ → id1 A a) ] ) OneObj + ≈⟨⟩ + FMap (Yoneda A a) (hom b OneObj) (id1 A a) + ≈⟨⟩ + hom b OneObj o id1 A a + ≈⟨ idR ⟩ + hom b OneObj + ∎ ) + comm1 : (b : Obj commaCat) → Sets [ Sets [ FMap (Yoneda A a) (hom b OneObj) o hom initObj ] ≈ Sets [ hom b o FMap (K A Sets *) (hom b OneObj) ] ] + comm1 b = let open ≈-Reasoning Sets in begin + FMap (Yoneda A a) (hom b OneObj) o ( λ x → id1 A a ) + ≈⟨ extensionality A ( λ x → comm2 b x ) ⟩ + hom b + ≈⟨⟩ + hom b o FMap (K A Sets *) (hom b OneObj) + ∎ + initial0 : (b : Obj commaCat) → + Hom commaCat initObj b + initial0 b = record { + arrow = hom b OneObj + ; comm = comm1 b } + -- what is comm f ? + comm-f : (b : Obj (K A Sets * ↓ (Yoneda A a))) (f : Hom (K A Sets * ↓ Yoneda A a) initObj b) + → Sets [ Sets [ FMap (Yoneda A a) (arrow f) o ( λ x → id1 A a ) ] + ≈ Sets [ hom b o FMap (K A Sets *) (arrow f) ] ] + comm-f b f = comm f + unique : {b : Obj (K A Sets * ↓ Yoneda A a)} (f : Hom (K A Sets * ↓ Yoneda A a) initObj b) + → (K A Sets * ↓ Yoneda A a) [ f ≈ initial0 b ] + unique {b} f = let open ≈-Reasoning A in begin + arrow f + ≈↑⟨ idR ⟩ + arrow f o id1 A a + ≈⟨⟩ + ( Sets [ FMap (Yoneda A a) (arrow f) o id1 Sets (FObj (Yoneda A a) a) ] ) (id1 A a) + ≈⟨⟩ + ( Sets [ FMap (Yoneda A a) (arrow f) o ( λ x → id1 A a ) ] ) OneObj + ≈⟨ ≈←≡ ( cong (λ k → k OneObj ) (comm f )) ⟩ + ( Sets [ hom b o FMap (K A Sets *) (arrow f) ] ) OneObj + ≈⟨⟩ + hom b OneObj + ∎ + + + +-- A is complete and K{*}↓U has preinitial full subcategory and U preserve limit then U is representable + +-- if U preserve limit, K{*}↓U has initial object from freyd.agda + +≡-cong = Relation.Binary.PropositionalEquality.cong + + +ub : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b ) + → Hom Sets (FObj (K A Sets *) b) (FObj U b) +ub A U b x OneObj = x +ob : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) )(b : Obj A) (x : FObj U b ) + → Obj ( K A Sets * ↓ U) +ob A U b x = record { obj = b ; hom = ub A U b x} +fArrow : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (U : Functor A (Sets {c₂}) ) {a b : Obj A} (f : Hom A a b) (x : FObj U a ) + → Hom ( K A Sets * ↓ U) ( ob A U a x ) (ob A U b (FMap U f x) ) +fArrow A U {a} {b} f x = record { arrow = f ; comm = fArrowComm a b f x } + where + fArrowComm1 : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → (y : * ) → FMap U f ( ub A U a x y ) ≡ ub A U b (FMap U f x) y + fArrowComm1 a b f x OneObj = refl + fArrowComm : (a b : Obj A) (f : Hom A a b) (x : FObj U a ) → + Sets [ Sets [ FMap U f o hom (ob A U a x) ] ≈ Sets [ hom (ob A U b (FMap U f x)) o FMap (K A Sets *) f ] ] + fArrowComm a b f x = extensionality Sets ( λ y → begin + ( Sets [ FMap U f o hom (ob A U a x) ] ) y + ≡⟨⟩ + FMap U f ( hom (ob A U a x) y ) + ≡⟨⟩ + FMap U f ( ub A U a x y ) + ≡⟨ fArrowComm1 a b f x y ⟩ + ub A U b (FMap U f x) y + ≡⟨⟩ + hom (ob A U b (FMap U f x)) y + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + + +-- if K{*}↓U has initial Obj, U is representable + +UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) + (U : Functor A (Sets {c₂}) ) + ( i : Obj ( K A Sets * ↓ U) ) + (In : HasInitialObject ( K A Sets * ↓ U) i ) + → Representable A U (obj i) +UisRepresentable A U i In = record { + repr→ = record { TMap = tmap1 ; isNTrans = record { commute = comm1 } } + ; repr← = record { TMap = tmap2 ; isNTrans = record { commute = comm2 } } + ; reprId→ = iso→ + ; reprId← = iso← + } where + comm11 : (a b : Obj A) (f : Hom A a b) (y : FObj U a ) → + ( Sets [ FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In (ob A U a x))) ] ) y + ≡ (Sets [ ( λ x → arrow (initial In (ob A U b x))) o FMap U f ] ) y + comm11 a b f y = begin + ( Sets [ FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In (ob A U a x))) ] ) y + ≡⟨⟩ + A [ f o arrow (initial In (ob A U a y)) ] + ≡⟨⟩ + A [ arrow ( fArrow A U f y ) o arrow (initial In (ob A U a y)) ] + ≡⟨ ≡←≈ A ( uniqueness In {ob A U b (FMap U f y) } (( K A Sets * ↓ U) [ fArrow A U f y o initial In (ob A U a y)] ) ) ⟩ + arrow (initial In (ob A U b (FMap U f y) )) + ≡⟨⟩ + (Sets [ ( λ x → arrow (initial In (ob A U b x))) o FMap U f ] ) y + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + tmap1 : (b : Obj A) → Hom Sets (FObj U b) (FObj (Yoneda A (obj i)) b) + tmap1 b x = arrow ( initial In (ob A U b x ) ) + comm1 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap (Yoneda A (obj i)) f o tmap1 a ] ≈ Sets [ tmap1 b o FMap U f ] ] + comm1 {a} {b} {f} = let open ≈-Reasoning Sets in begin + FMap (Yoneda A (obj i)) f o tmap1 a + ≈⟨⟩ + FMap (Yoneda A (obj i)) f o ( λ x → arrow (initial In ( ob A U a x ))) + ≈⟨ extensionality Sets ( λ y → comm11 a b f y ) ⟩ + ( λ x → arrow (initial In (ob A U b x))) o FMap U f + ≈⟨⟩ + tmap1 b o FMap U f + ∎ + comm21 : (a b : Obj A) (f : Hom A a b) ( y : Hom A (obj i) a ) → + (Sets [ FMap U f o (λ x → FMap U x (hom i OneObj))] ) y ≡ + (Sets [ ( λ x → (FMap U x ) (hom i OneObj)) o (λ x → A [ f o x ] ) ] ) y + comm21 a b f y = begin + FMap U f ( FMap U y (hom i OneObj)) + ≡⟨ ≡-cong ( λ k → k (hom i OneObj)) ( sym ( IsFunctor.distr (isFunctor U ) ) ) ⟩ + (FMap U (A [ f o y ] ) ) (hom i OneObj) + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + tmap2 : (b : Obj A) → Hom Sets (FObj (Yoneda A (obj i)) b) (FObj U b) + tmap2 b x = ( FMap U x ) ( hom i OneObj ) + comm2 : {a b : Obj A} {f : Hom A a b} → Sets [ Sets [ FMap U f o tmap2 a ] ≈ + Sets [ tmap2 b o FMap (Yoneda A (obj i)) f ] ] + comm2 {a} {b} {f} = let open ≈-Reasoning Sets in begin + FMap U f o tmap2 a + ≈⟨⟩ + FMap U f o ( λ x → ( FMap U x ) ( hom i OneObj ) ) + ≈⟨ extensionality Sets ( λ y → comm21 a b f y ) ⟩ + ( λ x → ( FMap U x ) ( hom i OneObj ) ) o ( λ x → A [ f o x ] ) + ≈⟨⟩ + ( λ x → ( FMap U x ) ( hom i OneObj ) ) o FMap (Yoneda A (obj i)) f + ≈⟨⟩ + tmap2 b o FMap (Yoneda A (obj i)) f + ∎ + iso0 : ( x : Obj A) ( y : Hom A (obj i ) x ) ( z : * ) + → ( Sets [ FMap U y o hom i ] ) z ≡ ( Sets [ ub A U x (FMap U y (hom i OneObj)) o FMap (K A Sets *) y ] ) z + iso0 x y OneObj = refl + iso→ : {x : Obj A} → Sets [ Sets [ tmap1 x o tmap2 x ] ≈ id1 Sets (FObj (Yoneda A (obj i)) x) ] + iso→ {x} = let open ≈-Reasoning A in extensionality Sets ( λ ( y : Hom A (obj i ) x ) → ≡←≈ A ( begin + ( Sets [ tmap1 x o tmap2 x ] ) y + ≈⟨⟩ + arrow ( initial In (ob A U x (( FMap U y ) ( hom i OneObj ) ))) + ≈↑⟨ uniqueness In (record { arrow = y ; comm = extensionality Sets ( λ (z : * ) → iso0 x y z ) } ) ⟩ + y + ∎ )) + iso← : {x : Obj A} → Sets [ Sets [ tmap2 x o tmap1 x ] ≈ id1 Sets (FObj U x) ] + iso← {x} = extensionality Sets ( λ (y : FObj U x ) → ( begin + ( Sets [ tmap2 x o tmap1 x ] ) y + ≡⟨⟩ + ( FMap U ( arrow ( initial In (ob A U x y ) )) ) ( hom i OneObj ) + ≡⟨ ≡-cong (λ k → k OneObj) ( comm ( initial In (ob A U x y ) )) ⟩ + hom (ob A U x y) OneObj + ≡⟨⟩ + y + ∎ ) ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + +------------- +-- Adjoint Functor Theorem +-- + +module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A B ) + (i : (b : Obj B) → Obj ( K A B b ↓ U) ) + (In : (b : Obj B) → HasInitialObject ( K A B b ↓ U) (i b) ) + where + + tmap-η : (y : Obj B) → Hom B y (FObj U (obj (i y))) + tmap-η y = hom (i y) + + sobj : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaObj (K A B a) U + sobj {a} {b} f = record {obj = b; hom = f } + solution : {a : Obj B} {b : Obj A} → ( f : Hom B a (FObj U b) ) → CommaHom (K A B a) U (i a) (sobj f) + solution {a} {b} f = initial (In a) (sobj f) + + ηf : (a b : Obj B) → ( f : Hom B a b ) → Obj ( K A B a ↓ U) + ηf a b f = sobj ( B [ tmap-η b o f ] ) + + univ : {a : Obj B} {b : Obj A} → (f : Hom B a (FObj U b)) + → B [ B [ FMap U (arrow (solution f)) o tmap-η a ] ≈ f ] + univ {a} {b} f = let open ≈-Reasoning B in begin + FMap U (arrow (solution f)) o tmap-η a + ≈⟨ comm (initial (In a) (sobj f)) ⟩ + hom (sobj f) o FMap (K A B a) (arrow (initial (In a) (sobj f))) + ≈⟨ idR ⟩ + f + ∎ + + unique : {a : Obj B} { b : Obj A } → { f : Hom B a (FObj U b) } → { g : Hom A (obj (i a)) b} → + B [ B [ FMap U g o tmap-η a ] ≈ f ] → A [ arrow (solution f) ≈ g ] + unique {a} {b} {f} {g} ugη=f = let open ≈-Reasoning A in begin + arrow (solution f) + ≈↑⟨ ≈←≡ ( cong (λ k → arrow (solution k)) ( ≡←≈ B ugη=f )) ⟩ + arrow (solution (B [ FMap U g o tmap-η a ] )) + ≈↑⟨ uniqueness (In a) (record { arrow = g ; comm = comm1 }) ⟩ + g + ∎ where + comm1 : B [ B [ FMap U g o hom (i a) ] ≈ B [ B [ FMap U g o tmap-η a ] o FMap (K A B a) g ] ] + comm1 = let open ≈-Reasoning B in sym idR + + UM : UniversalMapping B A U + UM = record { + F = λ b → obj (i b) ; + η = tmap-η ; + _* = λ f → arrow (solution f) ; + isUniversalMapping = record { + universalMapping = λ {a} {b} {f} → univ f ; + uniquness = unique + }} + + -- Adjoint can be built as follows (same as univeral-mapping.agda ) + -- + -- F : Functor B A + -- F = record { + -- FObj = λ b → obj (i b) + -- ; FMap = λ {x} {y} (f : Hom B x y ) → arrow (solution ( B [ tmap-η y o f ] )) + + -- nat-ε : NTrans A A (F ○ U) identityFunctor + -- nat-ε = record { + -- TMap = λ x → arrow ( solution (id1 B (FObj U x))) + + -- nat-η : NTrans B B identityFunctor (U ○ F) + -- nat-η = record { TMap = λ y → tmap-η y ; isNTrans = record { commute = comm1 } } where + + -- FisLeftAdjoint : Adjunction B A U F nat-η nat-ε + -- FisLeftAdjoint = record { isAdjunction = record { + +-- end +