Mercurial > hg > Members > kono > Proof > category
diff CatExponetial.agda @ 267:b1b728559d89
Constancy Functor
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Sep 2013 17:26:47 +0900 |
parents | eb935f04bf39 |
children | d6a6dd305da2 |
line wrap: on
line diff
--- a/CatExponetial.agda Sun Sep 22 13:19:01 2013 +0900 +++ b/CatExponetial.agda Sun Sep 22 17:26:47 2013 +0900 @@ -6,7 +6,9 @@ open import Category -- https://github.com/konn/category-agda open import Level -module CatExponetial {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') where +module CatExponetial where + +-- {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ' } open import HomReasoning open import cat-utility @@ -17,13 +19,13 @@ open Functor -CObj = Functor A B -CHom = λ (f : CObj ) → λ (g : CObj ) → NTrans A B f g +CObj = λ {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') → Functor A B +CHom = λ {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (f g : CObj A B ) → NTrans A B f g open NTrans -Cid : {a : CObj} → CHom a a -Cid {a} = record { TMap = \x -> id1 B (FObj a x) ; isNTrans = isNTrans1 {a} } where - commute : {a : CObj} {a₁ b : Obj A} {f : Hom A a₁ b} → +Cid : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ' ) {a : CObj A B } → CHom A B a a +Cid {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} A B {a} = record { TMap = \x -> id1 B (FObj a x) ; isNTrans = isNTrans1 {a} } where + commute : {a : CObj A B } {a₁ b : Obj A} {f : Hom A a₁ b} → B [ B [ FMap a f o id1 B (FObj a a₁) ] ≈ B [ id1 B (FObj a b) o FMap a f ] ] commute {a} {a₁} {b} {f} = let open ≈-Reasoning B in begin @@ -33,12 +35,13 @@ ≈↑⟨ idL ⟩ id1 B (FObj a b) o FMap a f ∎ - isNTrans1 : {a : CObj } → IsNTrans A B a a (\x -> id1 B (FObj a x)) + isNTrans1 : {a : CObj A B } → IsNTrans A B a a (\x -> id1 B (FObj a x)) isNTrans1 {a} = record { commute = \{a₁ b f} -> commute {a} {a₁} {b} {f} } -_+_ : {a b c : CObj} → CHom b c → CHom a b → CHom a c -_+_{a} {b} {c} f g = record { TMap = λ x → B [ TMap f x o TMap g x ] ; isNTrans = isNTrans1 } where - commute1 : (a b c : CObj ) (f : CHom b c) (g : CHom a b ) +_+_ : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ' } {a b c : CObj A B } + → CHom A B b c → CHom A B a b → CHom A B a c +_+_ {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} {A} {B} {a} {b} {c} f g = record { TMap = λ x → B [ TMap f x o TMap g x ] ; isNTrans = isNTrans1 } where + commute1 : (a b c : CObj A B ) (f : CHom A B b c) (g : CHom A B a b ) (a₁ b₁ : Obj A) (h : Hom A a₁ b₁) → B [ B [ FMap c h o B [ TMap f a₁ o TMap g a₁ ] ] ≈ B [ B [ TMap f b₁ o TMap g b₁ ] o FMap a h ] ] @@ -58,14 +61,15 @@ isNTrans1 : IsNTrans A B a c (λ x → B [ TMap f x o TMap g x ]) isNTrans1 = record { commute = λ {a₁ b₁ h} → commute1 a b c f g a₁ b₁ h } -_==_ : {a b : CObj} → CHom a b → CHom a b → Set (ℓ' ⊔ c₁) -_==_ {a} {b} f g = ∀{x} → B [ TMap f x ≈ TMap g x ] +_==_ : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ' } {a b : CObj A B } → + CHom A B a b → CHom A B a b → Set (ℓ' ⊔ c₁) +_==_ {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} {A} {B} {a} {b} f g = ∀{x} → B [ TMap f x ≈ TMap g x ] infix 4 _==_ open import Relation.Binary.Core -isB^A : IsCategory CObj CHom _==_ _+_ Cid -isB^A = +isB^A : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ' ) → IsCategory (CObj A B) (CHom A B) _==_ _+_ (Cid A B) +isB^A {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} A B = record { isEquivalence = record {refl = IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory B )); sym = \{i j} → sym1 {_} {_} {i} {j} ; trans = \{i j k} → trans1 {_} {_} {i} {j} {k} } @@ -74,13 +78,13 @@ ; o-resp-≈ = λ{a b c f g h i } → o-resp-≈1 {a} {b} {c} {f} {g} {h} {i} ; associative = IsCategory.associative ( Category.isCategory B ) } where - sym1 : {a b : CObj } {i j : CHom a b } → i == j → j == i + sym1 : {a b : CObj A B } {i j : CHom A B a b } → i == j → j == i sym1 {a} {b} {i} {j} eq {x} = let open ≈-Reasoning B in begin TMap j x ≈⟨ sym eq ⟩ TMap i x ∎ - trans1 : {a b : CObj } {i j k : CHom a b} → i == j → j == k → i == k + trans1 : {a b : CObj A B } {i j k : CHom A B a b} → i == j → j == k → i == k trans1 {a} {b} {i} {j} {k} i=j j=k {x} = let open ≈-Reasoning B in begin TMap i x ≈⟨ i=j ⟩ @@ -88,7 +92,7 @@ ≈⟨ j=k ⟩ TMap k x ∎ - o-resp-≈1 : {a b c : CObj} {f g : CHom a b} {h i : CHom b c } → + o-resp-≈1 : {a b c : CObj A B } {f g : CHom A B a b} {h i : CHom A B b c } → f == g → h == i → h + f == i + g o-resp-≈1 {a} {b} {c} {f} {g} {h} {i} f=g h=i {x} = let open ≈-Reasoning B in begin TMap h x o TMap f x @@ -96,13 +100,16 @@ TMap i x o TMap g x ∎ -B^A : Category (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ (suc ℓ ⊔ (suc c₂ ⊔ suc c₁))))) (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ (suc ℓ ⊔ (suc c₂ ⊔ suc c₁))))) (ℓ' ⊔ c₁) -B^A = - record { Obj = CObj - ; Hom = CHom +_^_ : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁' c₂' ℓ' ) (B : Category c₁ c₂ ℓ) → + Category (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ (suc ℓ ⊔ (suc c₂ ⊔ suc c₁))))) + (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ (suc ℓ ⊔ (suc c₂ ⊔ suc c₁))))) + (ℓ' ⊔ c₁) +_^_ {c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} B A = + record { Obj = CObj A B + ; Hom = CHom A B ; _o_ = _+_ ; _≈_ = _==_ - ; Id = Cid - ; isCategory = isB^A + ; Id = Cid A B + ; isCategory = isB^A A B }