Mercurial > hg > Members > kono > Proof > category
diff freyd.agda @ 628:b99660fa14e1
remove arrow's yellow
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 26 Jun 2017 17:18:23 +0900 |
parents | 34540494fdcf |
children | 693020c766d2 |
line wrap: on
line diff
--- a/freyd.agda Sun Jun 25 13:03:33 2017 +0900 +++ b/freyd.agda Mon Jun 26 17:18:23 2017 +0900 @@ -1,8 +1,7 @@ open import Category -- https://github.com/konn/category-agda open import Level -module freyd {c₁ c₂ ℓ : Level} - where +module freyd where open import cat-utility open import HomReasoning @@ -24,10 +23,11 @@ -- pre-initial record PreInitial {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) - (F : Functor A A ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where + {preini : Obj A} (F : Functor A A) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field - preinitialObj : Obj A - preinitialArrow : ∀{ a : Obj A } → Hom A ( FObj F (preinitialObj)) a + preinitialArrow : ∀{a : Obj A } → Hom A ( FObj F preini) a + preinitialObj : Obj A + preinitialObj = preini -- initial object @@ -50,7 +50,7 @@ initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (comp : Complete A A) (SFS : SmallFullSubcategory A ) → - (PI : PreInitial A (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS)) + (PI : PreInitial A {limit-c comp (SFSF SFS)} (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS)) initialFromPreInitialFullSubcategory A comp SFS PI = record { initial = initialArrow ; uniqueness = λ a f → lemma1 a f