Mercurial > hg > Members > kono > Proof > category
diff CCC.agda @ 794:ba575c73ea48
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Apr 2019 12:43:49 +0900 |
parents | f37f11e1b871 |
children |
line wrap: on
line diff
--- a/CCC.agda Mon Apr 22 02:41:53 2019 +0900 +++ b/CCC.agda Mon Apr 22 12:43:49 2019 +0900 @@ -52,8 +52,8 @@ ≈⟨ e3c ⟩ id1 A (a ∧ b ) ∎ - distr : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → A [ A [ < f , g > o h ] ≈ < A [ f o h ] , A [ g o h ] > ] - distr {a} {b} {c} {d} {f} {g} {h} = let open ≈-Reasoning A in begin + distr-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → A [ A [ < f , g > o h ] ≈ < A [ f o h ] , A [ g o h ] > ] + distr-π {a} {b} {c} {d} {f} {g} {h} = let open ≈-Reasoning A in begin < f , g > o h ≈↑⟨ e3c ⟩ < π o < f , g > o h , π' o < f , g > o h > @@ -62,8 +62,51 @@ ≈⟨ π-cong (car e3a ) (car e3b) ⟩ < f o h , g o h > ∎ - _×_ : { a b c d e : Obj A } ( f : Hom A a d ) (g : Hom A b e ) ( h : Hom A c (a ∧ b) ) → Hom A c ( d ∧ e ) - f × g = λ h → < A [ f o A [ π o h ] ] , A [ g o A [ π' o h ] ] > + _×_ : { a b c d : Obj A } ( f : Hom A a c ) (g : Hom A b d ) → Hom A (a ∧ b) ( c ∧ d ) + f × g = < (A [ f o π ] ) , (A [ g o π' ]) > + distr-* : {a b c d : Obj A } { h : Hom A (a ∧ b) c } { k : Hom A d a } → A [ A [ h * o k ] ≈ ( A [ h o < A [ k o π ] , π' > ] ) * ] + distr-* {a} {b} {c} {d} {h} {k} = begin + h * o k + ≈↑⟨ e4b ⟩ + ( ε o < (h * o k ) o π , π' > ) * + ≈⟨ *-cong ( begin + ε o < (h * o k ) o π , π' > + ≈↑⟨ cdr ( π-cong assoc refl-hom ) ⟩ + ε o ( < h * o ( k o π ) , π' > ) + ≈↑⟨ cdr ( π-cong (cdr e3a) e3b ) ⟩ + ε o ( < h * o ( π o < k o π , π' > ) , π' o < k o π , π' > > ) + ≈⟨ cdr ( π-cong assoc refl-hom) ⟩ + ε o ( < (h * o π) o < k o π , π' > , π' o < k o π , π' > > ) + ≈↑⟨ cdr ( distr-π ) ⟩ + ε o ( < h * o π , π' > o < k o π , π' > ) + ≈⟨ assoc ⟩ + ( ε o < h * o π , π' > ) o < k o π , π' > + ≈⟨ car e4a ⟩ + h o < k o π , π' > + ∎ ) ⟩ + ( h o < k o π , π' > ) * + ∎ where open ≈-Reasoning A + α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) + α = < A [ π o π ] , < A [ π' o π ] , π' > > + α' : {a b c : Obj A } → Hom A ( a ∧ ( b ∧ c ) ) (( a ∧ b ) ∧ c ) + α' = < < π , A [ π o π' ] > , A [ π' o π' ] > + β : {a b c d : Obj A } { f : Hom A a b} { g : Hom A a c } { h : Hom A a d } → A [ A [ α o < < f , g > , h > ] ≈ < f , < g , h > > ] + β {a} {b} {c} {d} {f} {g} {h} = begin + α o < < f , g > , h > + ≈⟨⟩ + ( < ( π o π ) , < ( π' o π ) , π' > > ) o < < f , g > , h > + ≈⟨ distr-π ⟩ + < ( ( π o π ) o < < f , g > , h > ) , ( < ( π' o π ) , π' > o < < f , g > , h > ) > + ≈⟨ π-cong refl-hom distr-π ⟩ + < ( ( π o π ) o < < f , g > , h > ) , ( < ( ( π' o π ) o < < f , g > , h > ) , ( π' o < < f , g > , h > ) > ) > + ≈↑⟨ π-cong assoc ( π-cong assoc refl-hom ) ⟩ + < ( π o (π o < < f , g > , h >) ) , ( < ( π' o ( π o < < f , g > , h > ) ) , ( π' o < < f , g > , h > ) > ) > + ≈⟨ π-cong (cdr e3a ) ( π-cong (cdr e3a ) e3b ) ⟩ + < ( π o < f , g > ) , < ( π' o < f , g > ) , h > > + ≈⟨ π-cong e3a ( π-cong e3b refl-hom ) ⟩ + < f , < g , h > > + ∎ where open ≈-Reasoning A + record CCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field