Mercurial > hg > Members > kono > Proof > category
diff yoneda.agda @ 783:bded2347efa4
CCC by equation
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 17 Apr 2019 12:03:45 +0900 |
parents | 340708e8d54f |
children | 232cea484067 |
line wrap: on
line diff
--- a/yoneda.agda Fri Mar 08 18:09:11 2019 +0900 +++ b/yoneda.agda Wed Apr 17 12:03:45 2019 +0900 @@ -165,7 +165,7 @@ ----- YonedaFunctor : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Functor A (SetsAop A) -YonedaFunctor {_} {c₂} {_} A = record { +YonedaFunctor A = record { FObj = λ a → y-obj A a ; FMap = λ f → y-map A f ; isFunctor = record { @@ -299,10 +299,25 @@ -- -- But we cannot prove like this -- FObj YonedaFunctor a ≡ FObj YonedaFunctor b → a ≡ b --- YondaLemma2 : {a b x : Obj A } → (FObj (FObj YonedaFunctor a) x) ≡ (FObj (FObj YonedaFunctor b ) x) → --- a ≡ b --- YondaLemma2 {a} {b} eq = {!!} + +open import Relation.Nullary +open import Data.Empty + +--YondaLemma2 : {c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → +-- (a b x : Obj A ) → (FObj (FObj (YonedaFunctor A) a) x) ≡ (FObj (FObj (YonedaFunctor A) b ) x) → a ≡ b +--YondaLemma2 A a bx eq = {!!} + -- N.B = ≡-cong gives you ! a ≡ b, so we cannot cong inv to prove a ≡ b + +--record Category c₁ c₂ ℓ : Set (suc (c₁ ⊔ c₂ ⊔ ℓ)) where +-- infixr 9 _o_ +-- infix 4 _≈_ +-- field +-- Obj : Set c₁ +-- Hom : Obj → Obj → Set c₂ +--YondaLemma31 : {c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → +-- (a b x : Obj A ) → Hom A a x ≡ Hom A b x → a ≡ b +--YondaLemma31 A a b x eq = {!!} -- -- Instead we prove only -- inv ( FObj YonedaFunctor a ) ≡ a @@ -314,11 +329,19 @@ YonedaLemma21 A {a} {x} f = refl open import Relation.Binary.HeterogeneousEquality --- a1 : { c₁ : Level} {A B : Set c₁ } {a : A } { b : B } → a ≅ b → A ≡ B a1 refl = refl --- --- YonedaInjective : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b x : Obj A} --- → FObj (FObj (YonedaFunctor A ) a ) x ≡ FObj (FObj (YonedaFunctor A ) b ) x --- → a ≡ b --- YonedaInjective A eq = ≡-cong ( λ y → inv A y ) eq + +-- YondaLemma3 : {c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → +-- (a b x : Obj A ) → Hom A a x ≅ Hom A b x → a ≡ b +-- YondaLemma3 A a b x eq = {!!} -- ≡-cong (inv A) ? + +a2 : ( a b : Set ) (f : a → a ) (g : b → a ) -> f ≅ g → a ≡ b +a2 a b f g eq = {!!} + +-- YonedaInjective : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} +-- → FObj (FObj (YonedaFunctor A ) a ) a ≅ FObj (FObj (YonedaFunctor A ) a ) b +-- → a ≡ b +-- YonedaInjective A {a} {b} eq = {!!} + +