Mercurial > hg > Members > kono > Proof > category
diff universal-mapping.agda @ 173:bf7f06580f5e
hmmmm
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 23 Aug 2013 17:30:04 +0900 |
parents | c7fef385330f |
children | 1c4788483d46 |
line wrap: on
line diff
--- a/universal-mapping.agda Fri Aug 23 15:38:03 2013 +0900 +++ b/universal-mapping.agda Fri Aug 23 17:30:04 2013 +0900 @@ -389,18 +389,14 @@ open UnityOfOppsite --- f : a -> U(b) --- f* : F(a)-> b - --- U(f*) : UF(a) -> U(b) +-- f : a -----------> U(b) +-- FMap U ( right uo f ) : UF(a) --> U(b) +-- FMap U ( right uo f ) o η : a -> UF(a) --> U(b) +-- right (FMap U ( right uo f ) o η) --- ∃g F(g) = right f <----- left F(g) = f --- ∃g UF(g) = U(f*) - --- ∃f U(f) = left g <----- right U(f) = g - --- UF(f) : UF(a) -> UFU(b) - +-- right f : F(a) --------> b +-- ε o (FMap F f) : F(a)--FU(b)--> b +-- left (ε o (FMap F f)) : a -----------> U(b) uo-η-map : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ'} @@ -414,36 +410,27 @@ ( F : Functor A B ) → ( uo : UnityOfOppsite A B U F) → {a : Obj A} {b : Obj B } -> ( f : Hom A a (FObj U b )) -> Hom B (FObj F a) b -uo-solution A B U F uo {a} {b} f = B [ right uo (id1 A (FObj U b)) o FMap F f ] -- right uo f - -lemma-u1 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ'} - { U : Functor B A } - { F : Functor A B } → - ( uo : UnityOfOppsite A B U F) → - {a : Obj A} {b : Obj B } -> ( f : Hom A a (FObj U b )) -> - B [ B [ right uo (id1 A (FObj U b)) o FMap F f ] ≈ right uo f ] -lemma-u1 = {!!} +uo-solution A B U F uo {a} {b} f = {!!} -- B [ right uo (id1 A (FObj U b)) o FMap F f ] + -- right uo f lemma-u2 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ'} { U : Functor B A } { F : Functor A B } → ( uo : UnityOfOppsite A B U F) → - {a : Obj A} {b : Obj B } -> ( f* : Hom B (FObj F a ) b ) -> - A [ A [ FMap U f* o left uo (id1 B (FObj F a)) ] ≈ left uo f* ] + {a : Obj A} {b : Obj B } -> ( f : Hom A a (FObj U b )) -> + B [ B [ right uo (id1 A (FObj U b)) o FMap F f ] ≈ right uo f ] lemma-u2 = {!!} ---- FMap U f* o id = FMap U f* ---- left uo f * = FMap U f* ---- left uo id1 = FMap U id = id --- f = right (FMap U f) -lemma-u3 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ'} +lemma-u1 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} {A : Category c₁ c₂ ℓ} {B : Category c₁' c₂' ℓ'} { U : Functor B A } - { F : Functor A B } → + { F : Functor A B } → ( uo : UnityOfOppsite A B U F) → - {a : Obj A} {b : Obj B } -> ( f* : Hom B (FObj F a ) b ) -> - B [ right uo ( FMap U f*) ≈ ? ] -lemma-u3 = ? + {a : Obj A} {b : Obj B } -> ( f : Hom A a (FObj U b ) ) -> + A [ A [ FMap U (right uo f) o left uo (id1 B (FObj F a)) ] ≈ f ] +lemma-u1 = {!!} +-- F(ε(b)) o η(F(b)) +-- F( right uo (id1 A (FObj U b)) ) o left uo (id1 B (FObj F a)) ] == 1 UO2UM : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A )