diff universal-mapping.agda @ 40:c34b1cfe9fdc

Adjunction to Universal Mapping end
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 22 Jul 2013 18:13:57 +0900
parents 77c3a5292a2f
children e9fa5c95eff7
line wrap: on
line diff
--- a/universal-mapping.agda	Mon Jul 22 17:51:08 2013 +0900
+++ b/universal-mapping.agda	Mon Jul 22 18:13:57 2013 +0900
@@ -36,9 +36,9 @@
                  ( ε : NTrans B B  ( F ○  U ) identityFunctor )
                  : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
    field
-       adjoint1 :   {a' : Obj A} { b' : Obj B } -> ( f : Hom A a' (FObj U b') ) -> 
+       adjoint1 :   { b' : Obj B } ->
                      A [ A [ ( FMap U ( TMap ε b' ))  o ( TMap η ( FObj U b' )) ]  ≈ Id {_} {_} {_} {A} (FObj U b') ]
-       adjoint2 :   {a' : Obj A} { b' : Obj B } -> ( f : Hom A a' (FObj U b') ) -> 
+       adjoint2 :   {a' : Obj A} ->
                      B [ B [ ( TMap ε ( FObj F a' ))  o ( FMap F ( TMap η a' )) ]  ≈ Id {_} {_} {_} {B} (FObj F a') ]
 
 record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
@@ -48,7 +48,7 @@
                  ( ε : NTrans B B  ( F ○  U ) identityFunctor )
                  : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where
     field
-       isAdjection : IsAdjunction A B U F η ε
+       isAdjunction : IsAdjunction A B U F η ε
 
 open Adjunction
 open UniversalMapping
@@ -82,7 +82,15 @@
                   FMap U (  B [ TMap ε b o FMap F f ] ) o TMap η a 
               ≈⟨ car (IsFunctor.distr ( isFunctor U )) ⟩
                  ( (FMap U (TMap ε b))  o (FMap U ( FMap F f )) ) o TMap η a 
-              ≈⟨ {!!} ⟩
+              ≈⟨ sym assoc ⟩
+                  (FMap U (TMap ε b))  o ((FMap U ( FMap F f ))  o TMap η a )
+              ≈⟨ cdr (nat A η) ⟩
+                  (FMap U (TMap ε b))  o ((TMap η (FObj U b )) o f )
+              ≈⟨ assoc ⟩
+                  ((FMap U (TMap ε b))  o (TMap η (FObj U b)))  o f 
+              ≈⟨ car ( IsAdjunction.adjoint1 ( isAdjunction adj))  ⟩
+                  id (FObj U b) o f
+              ≈⟨  idL  ⟩
                   f