Mercurial > hg > Members > kono > Proof > category
diff free-monoid.agda @ 160:c9f29b84ca2f
hmmm
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 19 Aug 2013 04:49:07 +0900 |
parents | 0be3e0a49cca |
children | ffeb33698173 |
line wrap: on
line diff
--- a/free-monoid.agda Mon Aug 19 04:42:06 2013 +0900 +++ b/free-monoid.agda Mon Aug 19 04:49:07 2013 +0900 @@ -165,10 +165,10 @@ FreeMonoidUniveralMapping : UniversalMapping A B U Generator eta FreeMonoidUniveralMapping = record { - _* = \{a b f} solution a b f ; + _* = \{a b} -> \f -> solution a b f ; isUniversalMapping = record { universalMapping = \{a b f} -> universalMapping {a} {b} {f} ; - uniquness = \{a b f} uniquness {a} {b} {f} + uniquness = \{a b f} -> uniquness {a} {b} {f} } } where Φ : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → List a -> Carrier b @@ -179,34 +179,34 @@ lemma-fm-1 {a} {b} {f} [] y = sym (proj₁ ( IsMonoid.identity ( isMonoid b) ) (Φ {a} {b} {f} y)) lemma-fm-1 {a} {b} {f} (x :: xs) y = let open ≡-Reasoning in sym ( begin - _∙_ b (Φ (x :: xs)) (Φ y) + _∙_ b (Φ {a} {b} {f} (x :: xs)) (Φ {a} {b} {f} y) ≡⟨⟩ - _∙_ b ( _∙_ b (f x) (Φ xs)) (Φ y) + _∙_ b ( _∙_ b (f x) (Φ {a} {b} {f} xs)) (Φ {a} {b} {f} y) ≡⟨ ( IsMonoid.assoc ( isMonoid b )) _ _ _ ⟩ - _∙_ b (f x) ( _∙_ b (Φ xs) (Φ y) ) + _∙_ b (f x) ( _∙_ b (Φ {a} {b} {f} xs) (Φ {a} {b} {f} y) ) ≡⟨ sym ( (IsMonoid.∙-cong (isMonoid b)) refl (lemma-fm-1 {a} {b} {f} xs y )) ⟩ - _∙_ b (f x) ( Φ ( xs ++ y ) ) + _∙_ b (f x) ( Φ {a} {b} {f} ( xs ++ y ) ) ≡⟨⟩ - Φ ( x :: ( xs ++ y ) ) + Φ {a} {b} {f} ( x :: ( xs ++ y ) ) ≡⟨⟩ - Φ ( (x :: xs) ++ y ) + Φ {a} {b} {f} ( (x :: xs) ++ y ) ≡⟨⟩ - Φ ((Generator a ∙ x :: xs) y) + Φ {a} {b} {f} ((Generator a ∙ x :: xs) y) ∎ ) solution : (a : Obj A ) (b : Obj B) ( f : Hom A a (FObj U b) ) → Hom B (Generator a ) b solution a b f = record { morph = \(l : List a) -> Φ l ; identity = refl ; - mdistr = \{x y} -> lemma-fm-1 x y - } - universalMapping : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → FMap U ( solution f ) o eta a ≡ f + mdistr = \{x y} -> lemma-fm-1 {a} {b} {f} x y + } + universalMapping : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → FMap U ( solution a b f ) o eta a ≡ f universalMapping {a} {b} {f} = let open ≡-Reasoning in begin - FMap U ( solution f ) o eta a + FMap U ( solution a b f ) o eta a ≡⟨ {!!} ⟩ f ∎ uniquness : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → - { g : Hom B (Generator a) b } → (FMap U g) o (eta a ) ≡ f → B [ solution f ≈ g ] + { g : Hom B (Generator a) b } → (FMap U g) o (eta a ) ≡ f → B [ solution a b f ≈ g ] uniquness = {!!}