Mercurial > hg > Members > kono > Proof > category
diff cat-utility.agda @ 300:d6a6dd305da2
arrow and lambda fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 29 Sep 2013 14:01:07 +0900 |
parents | 2ff44ee3cb32 |
children | 702adc45704f |
line wrap: on
line diff
--- a/cat-utility.agda Sun Sep 29 13:36:42 2013 +0900 +++ b/cat-utility.agda Sun Sep 29 14:01:07 2013 +0900 @@ -106,9 +106,9 @@ Functor*Nat : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') - (F : Functor B C) -> { G H : Functor A B } -> ( n : NTrans A B G H ) -> NTrans A C (F ○ G) (F ○ H) + (F : Functor B C) → { G H : Functor A B } → ( n : NTrans A B G H ) → NTrans A C (F ○ G) (F ○ H) Functor*Nat A {B} C F {G} {H} n = record { - TMap = \a -> FMap F (TMap n a) + TMap = λ a → FMap F (TMap n a) ; isNTrans = record { commute = commute } @@ -127,9 +127,9 @@ ∎ Nat*Functor : {c₁ c₂ ℓ c₁' c₂' ℓ' c₁'' c₂'' ℓ'' : Level} (A : Category c₁ c₂ ℓ) {B : Category c₁' c₂' ℓ'} (C : Category c₁'' c₂'' ℓ'') - { G H : Functor B C } -> ( n : NTrans B C G H ) -> (F : Functor A B) -> NTrans A C (G ○ F) (H ○ F) + { G H : Functor B C } → ( n : NTrans B C G H ) → (F : Functor A B) → NTrans A C (G ○ F) (H ○ F) Nat*Functor A {B} C {G} {H} n F = record { - TMap = \a -> TMap n (FObj F a) + TMap = λ a → TMap n (FObj F a) ; isNTrans = record { commute = commute } @@ -156,9 +156,9 @@ : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field T=UF : T ≃ (UR ○ FR) - μ=UεF : {x : Obj A } -> A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] - -- ηR=η : {x : Obj A } -> A [ TMap ηR x ≈ TMap η x ] -- We need T -> UR FR conversion - -- μR=μ : {x : Obj A } -> A [ TMap μR x ≈ TMap μ x ] + μ=UεF : {x : Obj A } → A [ TMap μR x ≈ FMap UR ( TMap εR ( FObj FR x ) ) ] + -- ηR=η : {x : Obj A } → A [ TMap ηR x ≈ TMap η x ] -- We need T → UR FR conversion + -- μR=μ : {x : Obj A } → A [ TMap μR x ≈ TMap μ x ] record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (e : Hom A c a) (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where @@ -178,7 +178,7 @@ -- f | g -- |f×g -- v - -- a <-------- ab ----------> b + -- a <-------- ab ---------→ b -- π1 π2 @@ -201,11 +201,11 @@ -- Pullback -- f - -- a -------> c + -- a ------→ c -- ^ ^ -- π1 | |g -- | | - -- ab -------> b + -- ab ------→ b -- ^ π2 -- | -- d