diff src/CCCSets.agda @ 999:d89f2c8cf0f4

separate CCCSets
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 08 Mar 2021 08:25:30 +0900
parents
children bfd9c55ac628
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/CCCSets.agda	Mon Mar 08 08:25:30 2021 +0900
@@ -0,0 +1,285 @@
+{-# OPTIONS --allow-unsolved-metas #-}
+module CCCSets where
+
+open import Level
+open import Category 
+open import HomReasoning
+open import cat-utility
+open import Data.Product renaming (_×_ to _/\_  ) hiding ( <_,_> )
+open import Category.Constructions.Product
+open import  Relation.Binary.PropositionalEquality hiding ( [_] )
+open import CCC
+
+open Functor
+
+--   ccc-1 : Hom A a 1 ≅ {*}
+--   ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b )
+--   ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c
+
+open import Category.Sets
+
+-- Sets is a CCC
+
+import Axiom.Extensionality.Propositional
+postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality  c₂ c₂
+
+data One  {c : Level } : Set c where
+  OneObj : One   -- () in Haskell ( or any one object set )
+
+sets : {c : Level } → CCC (Sets {c})
+sets  = record {
+         1  = One
+       ; ○ = λ _ → λ _ → OneObj
+       ; _∧_ = _∧_
+       ; <_,_> = <,>
+       ; π = π
+       ; π' = π'
+       ; _<=_ = _<=_
+       ; _* = _*
+       ; ε = ε
+       ; isCCC = isCCC
+  } where
+         1 : Obj Sets 
+         1 = One 
+         ○ : (a : Obj Sets ) → Hom Sets a 1
+         ○ a = λ _ → OneObj
+         _∧_ : Obj Sets → Obj Sets → Obj Sets
+         _∧_ a b =  a /\  b
+         <,> : {a b c : Obj Sets } → Hom Sets c a → Hom Sets c b → Hom Sets c ( a ∧ b)
+         <,> f g = λ x → ( f x , g x )
+         π : {a b : Obj Sets } → Hom Sets (a ∧ b) a
+         π {a} {b} =  proj₁ 
+         π' : {a b : Obj Sets } → Hom Sets (a ∧ b) b
+         π' {a} {b} =  proj₂ 
+         _<=_ : (a b : Obj Sets ) → Obj Sets
+         a <= b  = b → a
+         _* : {a b c : Obj Sets } → Hom Sets (a ∧ b) c → Hom Sets a (c <= b)
+         f * =  λ x → λ y → f ( x , y )
+         ε : {a b : Obj Sets } → Hom Sets ((a <= b ) ∧ b) a
+         ε {a} {b} =  λ x → ( proj₁ x ) ( proj₂ x )
+         isCCC : CCC.IsCCC Sets 1 ○ _∧_ <,> π π' _<=_ _* ε
+         isCCC = record {
+               e2  = e2
+             ; e3a = λ {a} {b} {c} {f} {g} → e3a {a} {b} {c} {f} {g}
+             ; e3b = λ {a} {b} {c} {f} {g} → e3b {a} {b} {c} {f} {g}
+             ; e3c = e3c
+             ; π-cong = π-cong
+             ; e4a = e4a
+             ; e4b = e4b
+             ; *-cong = *-cong
+           } where
+                e2 : {a : Obj Sets} {f : Hom Sets a 1} → Sets [ f ≈ ○ a ]
+                e2 {a} {f} = extensionality Sets ( λ x → e20 x )
+                  where
+                        e20 : (x : a ) → f x ≡ ○ a x
+                        e20 x with f x
+                        e20 x | OneObj = refl
+                e3a : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} →
+                    Sets [ ( Sets [  π  o ( <,> f g)  ] ) ≈ f ]
+                e3a = refl
+                e3b : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} →
+                    Sets [ Sets [ π' o ( <,> f g ) ] ≈ g ]
+                e3b = refl
+                e3c : {a b c : Obj Sets} {h : Hom Sets c (a ∧ b)} →
+                    Sets [ <,> (Sets [ π o h ]) (Sets [ π' o h ]) ≈ h ]
+                e3c = refl
+                π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} →
+                    Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ <,> f g ≈ <,> f' g' ]
+                π-cong refl refl = refl
+                e4a : {a b c : Obj Sets} {h : Hom Sets (c ∧ b) a} →
+                    Sets [ Sets [ ε o <,> (Sets [ h * o π ]) π' ] ≈ h ]
+                e4a = refl
+                e4b : {a b c : Obj Sets} {k : Hom Sets c (a <= b)} →
+                    Sets [ (Sets [ ε o <,> (Sets [ k o π ]) π' ]) * ≈ k ]
+                e4b = refl
+                *-cong : {a b c : Obj Sets} {f f' : Hom Sets (a ∧ b) c} →
+                    Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ]
+                *-cong refl = refl
+
+--             ○ b
+--       b -----------→ 1
+--       |              |
+--     m |              | ⊤
+--       ↓    char m    ↓
+--       a -----------→ Ω
+--             h
+
+data II  {c : Level } : Set c where
+     true : II
+     false : II
+
+data Tker {c : Level} {a : Set c} ( f : a → II {c} ) : Set c where
+     isTrue : (x : a ) → f x ≡ true → Tker f
+
+irr : { c₂ : Level}  {d : Set c₂ }  { x y : d } ( eq eq' :  x  ≡ y ) → eq ≡ eq'
+irr refl refl = refl
+
+topos : {c : Level } → Topos (Sets {c}) sets
+topos {c}  = record {
+         Ω = II
+      ;  ⊤ = λ _ → true
+      ;  Ker = tker
+      ;  char = tchar
+      ;  isTopos = record {
+                 char-uniqueness  = λ {a} {b} {h} m mono →  extensionality Sets ( λ x → {!!} )
+              ;  ker-iso = {!!}
+         }
+    } where
+        tker   : {a : Obj Sets} (h : Hom Sets a II) → Equalizer Sets h (Sets [ (λ _ → true) o CCC.○ sets a ])
+        tker {a} h = record {
+                equalizer-c = Tker h
+              ; equalizer = etker 
+              ; isEqualizer = record {
+                      fe=ge = extensionality Sets ( λ x → e-eq x )
+                   ;  k = k
+                   ;  ek=h = λ {d} {h1} {eq} → extensionality Sets ( λ x → refl )
+                   ;  uniqueness = λ {d} {h1} {eq} {k'} ek=h  → extensionality Sets ( λ x → uniq h1 eq k' ek=h x )
+              }
+          } where
+           etker : Hom Sets ( Tker h ) a
+           etker (isTrue x eq) = x
+           e-eq : (x : Tker h ) → h ( etker  x ) ≡ true 
+           e-eq (isTrue x eq ) = eq
+           k :  {d : Obj Sets} (h₁ : Hom Sets d a) →
+                    Sets [ Sets [ h o h₁ ] ≈ Sets [ Sets [ (λ _ → true) o CCC.○ sets a ] o h₁ ] ] →
+                    Hom Sets d (Tker h)
+           k {d} h1 hf=hg x = isTrue (h1 x) ( cong ( λ k → k x) hf=hg )
+           tker-cong :   (x y : Tker h ) → etker x ≡ etker y  →  x  ≡ y
+           tker-cong ( isTrue x eq  ) (isTrue .x eq' ) refl   =  cong ( λ ee → isTrue x ee ) ( irr eq eq' )
+           uniq : {d    : Obj Sets} (h1   : Hom Sets d a) -- etker (k h1 eq x) ≡ etker (k' x)
+                (eq   : Sets [ Sets [ h o h1 ] ≈ Sets [ Sets [ (λ _ → true) o (λ _ → OneObj) ] o h1 ] ])
+                (k'   : Hom Sets d (Tker h)) (ek=h : Sets [ Sets [ etker o k' ] ≈ h1 ]) (x    : d) →  k h1 eq x ≡ k' x
+           uniq h1 eq k' ek=h x with cong (λ j → j x) ek=h --  etker (k h1 eq x) ≡ etker (k' x)
+           ... | t = tker-cong (k h1 eq x) (k' x) (sym t)
+        tchar : {a b : Obj Sets} (m : Hom Sets b a) → Mono Sets m → Hom Sets a II
+        tchar {a} {b} m mono x = true
+
+open import graph
+module ccc-from-graph {c₁ c₂ : Level }  (G : Graph {c₁} {c₂})  where
+
+   open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] )
+   open Graph
+
+   V = vertex G
+   E : V → V → Set c₂
+   E = edge G
+   
+   data Objs : Set c₁ where
+      atom : V → Objs 
+      ⊤ : Objs 
+      _∧_ : Objs  → Objs → Objs 
+      _<=_ : Objs → Objs → Objs 
+
+   data  Arrows  : (b c : Objs ) → Set (c₁  ⊔  c₂)
+   data Arrow :  Objs → Objs → Set (c₁  ⊔ c₂)  where                       --- case i
+      arrow : {a b : V} →  E a b → Arrow (atom a) (atom b)
+      π : {a b : Objs } → Arrow ( a ∧ b ) a
+      π' : {a b : Objs } → Arrow ( a ∧ b ) b
+      ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a
+      _* : {a b c : Objs } → Arrows (c ∧ b ) a → Arrow c ( a <= b )        --- case v
+
+   data  Arrows where
+      id : ( a : Objs ) → Arrows a a                                      --- case i
+      ○ : ( a : Objs ) → Arrows a ⊤                                       --- case i
+      <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b)      -- case iii
+      iv  : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c   -- cas iv
+
+   _・_ :  {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c
+   id a ・ g = g
+   ○ a ・ g = ○ _
+   < f , g > ・ h = < f ・ h , g ・ h >
+   iv f g ・ h = iv f ( g ・ h )
+
+
+   identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f
+   identityL = refl
+
+   identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f
+   identityR {a} {a} {id a} = refl
+   identityR {a} {⊤} {○ a} = refl 
+   identityR {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR identityR
+   identityR {a} {b} {iv f g} = cong (λ k → iv f k ) identityR
+
+   assoc≡ : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) →
+                            (f ・ (g ・ h)) ≡ ((f ・ g) ・ h)
+   assoc≡ (id a) g h = refl
+   assoc≡ (○ a) g h = refl 
+   assoc≡ < f , f₁ > g h =  cong₂ (λ j k → < j , k > ) (assoc≡ f g h) (assoc≡ f₁ g h) 
+   assoc≡ (iv f f1) g h = cong (λ k → iv f k ) ( assoc≡ f1 g h )
+
+   -- positive intutionistic calculus
+   PL :  Category  c₁ (c₁  ⊔ c₂) (c₁  ⊔ c₂)
+   PL = record {
+            Obj  = Objs;
+            Hom = λ a b →  Arrows  a b ;
+            _o_ =  λ{a} {b} {c} x y → x ・ y ;
+            _≈_ =  λ x y → x ≡  y ;
+            Id  =  λ{a} → id a ;
+            isCategory  = record {
+                    isEquivalence =  record {refl = refl ; trans = trans ; sym = sym} ;
+                    identityL  = λ {a b f} → identityL {a} {b} {f} ; 
+                    identityR  = λ {a b f} → identityR {a} {b} {f} ; 
+                    o-resp-≈  = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i}  ; 
+                    associative  = λ{a b c d f g h } → assoc≡  f g h
+               }
+           } where  
+              o-resp-≈  : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} →
+                                    f ≡  g → h ≡  i → (h ・ f) ≡ (i ・ g)
+              o-resp-≈ refl refl = refl
+--------
+--
+-- Functor from Positive Logic to Sets
+--
+
+   -- open import Category.Sets
+   -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionalit y c₂ c₂
+
+   open import Data.List
+
+   C = graphtocat.Chain G
+
+   tr : {a b : vertex G} → edge G a b → ((y : vertex G) → C y a) → (y : vertex G) → C y b
+   tr f x y = graphtocat.next f (x y) 
+   
+   fobj :  ( a  : Objs  ) → Set (c₁  ⊔ c₂)
+   fobj  (atom x) = ( y : vertex G ) → C y x
+   fobj ⊤ = One
+   fobj  (a ∧ b) = ( fobj  a /\ fobj  b)
+   fobj  (a <= b) = fobj  b → fobj  a
+
+   fmap :  { a b : Objs  } → Hom PL a b → fobj  a → fobj  b
+   amap :  { a b : Objs  } → Arrow  a b → fobj  a → fobj  b
+   amap  (arrow x) y =  tr x y -- tr x
+   amap π ( x , y ) = x 
+   amap π' ( x , y ) = y
+   amap ε (f , x ) = f x
+   amap (f *) x = λ y →  fmap f ( x , y ) 
+   fmap (id a) x = x
+   fmap (○ a) x = OneObj
+   fmap < f , g > x = ( fmap f x , fmap g x )
+   fmap (iv x f) a = amap x ( fmap f a )
+
+--   CS is a map from Positive logic to Sets
+--    Sets is CCC, so we have a cartesian closed category generated by a graph
+--       as a sub category of Sets
+
+   CS :  Functor PL (Sets {c₁ ⊔ c₂})
+   FObj CS a  = fobj  a
+   FMap CS {a} {b} f = fmap  {a} {b} f
+   isFunctor CS = isf where
+        _+_ = Category._o_ PL
+        ++idR = IsCategory.identityR ( Category.isCategory PL )
+        distr : {a b c : Obj PL}  { f : Hom PL a b } { g : Hom PL b c } → (z : fobj  a ) → fmap (g + f) z ≡ fmap g (fmap f z)
+        distr {a} {a₁} {a₁} {f} {id a₁} z = refl
+        distr {a} {a₁} {⊤} {f} {○ a₁} z = refl
+        distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k  →  j , k  ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z)
+        distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr  {a} {b} {d} {f} {g} z) x where 
+           adistr : fmap (g + f) z ≡ fmap g (fmap f z) →
+                ( x : Arrow d c ) → fmap ( iv x (g + f) ) z  ≡ fmap ( iv x g ) (fmap f z )
+           adistr eq x = cong ( λ k → amap x k ) eq
+        isf : IsFunctor PL Sets fobj fmap 
+        IsFunctor.identity isf = extensionality Sets ( λ x → refl )
+        IsFunctor.≈-cong isf refl = refl 
+        IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) 
+
+