diff freyd.agda @ 484:fcae3025d900

fix Limit pu a0 and t0 in record definition
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 11 Mar 2017 16:38:08 +0900
parents 65e6906782bb
children c257347a27f3
line wrap: on
line diff
--- a/freyd.agda	Sat Mar 11 10:51:12 2017 +0900
+++ b/freyd.agda	Sat Mar 11 16:38:08 2017 +0900
@@ -49,7 +49,7 @@
 initialFromPreInitialFullSubcategory : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
       (comp : Complete A A)
       (SFS : SmallFullSubcategory A ) → 
-      (PI : PreInitial A (SFSF SFS )) → { a0 : Obj A } → HasInitialObject A (limit-c comp (SFSF SFS))
+      (PI : PreInitial A (SFSF SFS )) → HasInitialObject A (limit-c comp (SFSF SFS))
 initialFromPreInitialFullSubcategory A comp SFS PI = record {
       initial = initialArrow ; 
       uniqueness  = λ a f → lemma1 a f
@@ -58,35 +58,35 @@
       F = SFSF SFS   
       FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b 
       FMap←  = SFSFMap←  SFS
-      a0 : Obj A
-      a0 = limit-c comp F
-      lim : ( Γ : Functor A A ) → Limit A A Γ (limit-c comp Γ) (limit-u comp Γ)
+      a00 : Obj A
+      a00 = limit-c comp F
+      lim : ( Γ : Functor A A ) → Limit A A Γ 
       lim Γ =  isLimit comp Γ 
-      u : NTrans A A (K A A a0) F
-      u = T0 ( lim F )
+      u : NTrans A A (K A A a00) F
+      u = t0 ( lim F )
       equ : {a b : Obj A} → (f g : Hom A a b)  → IsEqualizer A (equalizer-e comp f g ) f g
       equ f g = Complete.isEqualizer comp f g 
       ep : {a b : Obj A} → {f g : Hom A a b}  → Obj A 
       ep {a} {b} {f} {g} = equalizer-p comp f g
       ee :  {a b : Obj A} → {f g : Hom A a b}  → Hom A (ep {a} {b} {f} {g} ) a 
       ee {a} {b} {f} {g} = equalizer-e comp f g  
-      f : {a : Obj A} → Hom A  a0 (FObj F  (preinitialObj PI {a} ) ) 
+      f : {a : Obj A} → Hom A  a00 (FObj F  (preinitialObj PI {a} ) ) 
       f {a} = TMap u (preinitialObj PI {a} ) 
-      initialArrow :  ∀( a : Obj A )  →  Hom A a0 a
+      initialArrow :  ∀( a : Obj A )  →  Hom A a00 a
       initialArrow a  = A [ preinitialArrow PI {a}  o f ]
-      equ-fi : { a : Obj A} → {f' : Hom A a0 a} → 
+      equ-fi : { a : Obj A} → {f' : Hom A a00 a} → 
           IsEqualizer A ee ( A [ preinitialArrow PI {a} o  f ] ) f'
       equ-fi  {a} {f'} = equ ( A [ preinitialArrow PI {a} o  f ] ) f'
-      e=id : {e : Hom A a0 a0} → ( {c : Obj A} → A [ A [ TMap u  c o  e ]  ≈  TMap u c ] ) → A [ e  ≈ id1 A a0 ]
+      e=id : {e : Hom A a00 a00} → ( {c : Obj A} → A [ A [ TMap u  c o  e ]  ≈  TMap u c ] ) → A [ e  ≈ id1 A a00 ]
       e=id  {e} uce=uc =  let open ≈-Reasoning (A) in
             begin
               e
             ≈↑⟨ limit-uniqueness  (lim F) e ( λ {i} → uce=uc ) ⟩
-              limit (lim F) a0 u 
-            ≈⟨ limit-uniqueness (lim F) (id1 A a0) ( λ {i} → idR ) ⟩
-              id1 A a0
+              limit (lim F) a00 u 
+            ≈⟨ limit-uniqueness (lim F) (id1 A a00) ( λ {i} → idR ) ⟩
+              id1 A a00

-      kfuc=uc : {c k1 : Obj A} →  {p : Hom A k1 a0} → A [ A [ TMap u  c  o  
+      kfuc=uc : {c k1 : Obj A} →  {p : Hom A k1 a00} → A [ A [ TMap u  c  o  
               A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ]  
                       ≈ TMap u c ]
       kfuc=uc {c} {k1} {p} =  let open ≈-Reasoning (A) in
@@ -99,13 +99,13 @@
             ≈↑⟨ car  ( full→ SFS ) ⟩
                   FMap F (FMap← (TMap u c o p o preinitialArrow PI)) o TMap u (preinitialObj PI)
             ≈⟨ nat u  ⟩
-                  TMap u c o FMap (K A A a0) (FMap← (TMap u c o p o preinitialArrow PI)) 
+                  TMap u c o FMap (K A A a00) (FMap← (TMap u c o p o preinitialArrow PI)) 
             ≈⟨⟩
-                  TMap u c o id1 A a0
+                  TMap u c o id1 A a00
             ≈⟨ idR ⟩
                  TMap u  c  

-      kfuc=1 : {k1 : Obj A} →  {p : Hom A k1 a0} → A [ A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ≈ id1 A a0 ]
+      kfuc=1 : {k1 : Obj A} →  {p : Hom A k1 a00} → A [ A [ p o A [ preinitialArrow PI {k1} o TMap u (preinitialObj PI) ] ] ≈ id1 A a00 ]
       kfuc=1 {k1} {p} = e=id ( kfuc=uc )
       -- if equalizer has right inverse, f = g
       lemma2 :  (a b : Obj A) {c : Obj A} ( f g : Hom A a b ) 
@@ -129,14 +129,14 @@
                ≈⟨ idR ⟩
                 g

-      lemma1 : (a : Obj A) (f' : Hom A a0 a) → A [ f' ≈ initialArrow a ]
+      lemma1 : (a : Obj A) (f' : Hom A a00 a) → A [ f' ≈ initialArrow a ]
       lemma1 a f' = let open ≈-Reasoning (A) in 
              sym (
              begin
                  initialArrow a
              ≈⟨⟩
                  preinitialArrow PI {a} o  f
-             ≈⟨ lemma2 a0 a (A [ preinitialArrow PI {a} o  f ]) f' {ee {a0} {a} {A [ preinitialArrow PI {a} o  f ]} {f'} } (equ-fi )
+             ≈⟨ lemma2 a00 a (A [ preinitialArrow PI {a} o  f ]) f' {ee {a00} {a} {A [ preinitialArrow PI {a} o  f ]} {f'} } (equ-fi )
                       (kfuc=1 {ep} {ee} ) ⟩
                  f'
              ∎  )